Daño selectivo de fibras rápidas tras un ejercicio en prensa de piernas hasta al fallo volitivo: estudio de caso de un saltador de pértiga (Selective fast fiber damage after leg press exercise leading to failure: a pole vaulter case report)

Autores/as

DOI:

https://doi.org/10.47197/retos.v51.98084

Palabras clave:

muscle damage, creatine kinase, myosin isoforms, power output

Resumen

El objetivo de este estudio fue investigar, en un saltador de pértiga entrenado (PV) y en un estudiante de educación física entrenado en resistencia (PE), el efecto de un ejercicio de prensa de piernas hasta el fallo volitivo (LPF) sobre los niveles séricos de enzimas musculares e isoformas de la miosina rápida (FM) y lenta (SM), examinando simultáneamente las variables mecánicas como indicadores del rendimiento y la fatiga desarrollados a lo largo del ejercicio. Se utilizó un diseño de estudio de caso único basado en una comparación observacional de la respuesta entre dos participantes dicotómicos, PV y PE. Las diferencias entre los resultados del ejercicio de los participantes se examinaron mediante prueba-t para muestras independientes o el test de Mann-Whitney. Se analizaron los niveles séricos de enzimas musculares e isoformas de miosina al inicio y a las 24 y 48 horas después del LPF. Los análisis de los resultados del ejercicio mostraron que el índice medio de fatiga del PV fue significativamente mayor (P = 0,004). Además, durante las seis primeras series, la potencia concéntrica media ejercida por el PV fue significativamente (P < 0,01) mayor (rango: 14% a 35%) que la del PE. El PV sólo mostró leves aumentos agudos de la creatina quinasa (CK) sérica y de la FM 24 horas después del ejercicio. Por el contrario, el PE presentó aumentos séricos persistentes de varias enzimas musculares y SM hasta 48 h después del ejercicio. Las variables mecánicas del ejercicio del PV revelaron un perfil explosivo (orientado a la potencia) que conducía a un daño leve selectivo de las fibras rápidas. Por el contrario, las variables mecánicas del ejercicio del PE mostraron un perfil resistente a la fatiga, que indujo una mayor actividad enzimática muscular y concentración sérica de SM, sugiriendo un mayor grado de daño de las fibras lentas.

Palabras clave: daño muscular, creatina quinasa, isoformas de la miosina, producción de potencia.

Abstract. The aim of this study was to investigate, in a trained pole vaulter (PV) and in an endurance-trained physical education student (PE), the effect of a leg press exercise leading to failure (LPF) on changes in serum activity of muscle enzymes and serum concentration of fast (FM) and slow (SM) myosin isoforms, while simultaneously examining mechanical output components as indicators of performance and fatigue developed throughout exercise. A case report study design based on an observational comparison of response between two dichotomous participants, PV and PE, was used. Differences between the participants’ exercise outputs were examined by unpaired t-test or Mann-Whitney test and serum levels of muscle enzymes and myosin isoforms were analyzed at baseline and 24 and 48 hours after LPF. Exercise output analyses showed that the PV’s average fatigue index was significantly higher (P = 0.004). Moreover, during the first six sets, the concentric average power exerted by the PV was significantly (P < 0.01) higher (range: 14% to 35%) than that of the PE. The PV only showed acute mild increases of serum creatine kinase (CK) and FM 24 hours after exercise. In contrast, the PE presented persistent serum rises of several muscle enzymes and SM until 48 h after exercise. The PV’s exercise output revealed an explosive (power-oriented) profile leading to selective mild damage of fast fibers. In contrast, the PE exercise output showed a fatigue-resistant profile, which induced greater muscle enzyme activity and SM serum concentration, suggesting a higher extent of slow fiber damage.

Keywords: muscle damage, creatine kinase, myosin isoforms, power output.

Citas

Ayubi, N., Kusnanik, N. W., Herawati, L., Muhammad, H. N., Komaini, A., Nashrudin, M., Naharudin, B., Kusuma, D. A., Kartiko, D. C., Siantoro, G., & Firmansyah, A. (2023). Curcumin: The Active Compound in Turmeric has the Potential to Reduce Pain Intensity and Increase Range of Motion During Exercise-Induced Muscle Damage. In Retos (Vol. 49). https://recyt.fecyt.es/index.php/retos/index

Baird, M. F., Graham, S. M., Baker, J. S., & Bickerstaff, G. F. (2012). Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery. Journal of Nutrition and Metabolism, 2012, 960363. https://doi.org/10.1155/2012/960363

Bessa, A., Oliveira, V. N., De Agostini, G. G., Oliveira, R. J., Oliveira, A. C., White, G., Wells, G., Teixeira, D. N., & Espindola, F. S. (2013). Exercise intensity and recovery: Biomarkers of injury, inflammation and oxidative stress. Journal of Strength and Conditioning Research. https://doi.org/10.1519/JSC.0b013e31828f1ee9

Brancaccio, P., Lippi, G., & Maffulli, N. (2010). Biochemical markers of muscular damage. Clinical Chemistry and Laboratory Medicine, 48(6), 757–767. https://doi.org/10.1515/CCLM.2010.179

Burd, N. A., Andrews, R. J., West, D. W., Little, J. P., Cochran, A. J., Hector, A. J., Cashaback, J. G., Gibala, M. J., Potvin, J. R., Baker, S. K., & Phillips, S. M. (2012). Muscle time under tension during resistance exercise stimu-lates differential muscle protein sub-fractional synthetic responses in men. The Journal of Physiolology, 590(2), 351–362. https://doi.org/10.1113/jphysiol.2011.221200

Carmona, G., Guerrero, M., Cussó, R., Padullés, J. M., Moras, G., Lloret, M., Bedini, J. L., & Cadefau, J. A. (2015). Muscle enzyme and fiber type-specific sarcomere protein increases in serum after inertial concentric-eccentric ex-ercise. Scandinavian Journal of Medicine & Science in Sports, 25(6), e547–e557. https://doi.org/10.1111/sms.12363

Carmona, G., Roca, E., Guerrero, M., Cussó, R., Bárcena, C., Mateu, M., & Cadefau, J. (2019). Fibre-type-specific and Mitochondrial Biomarkers of Muscle Damage after Mountain Races. International Journal of Sports Medicine, 40(04), 253–262. https://doi.org/10.1055/a-0808-4692

Carmona, G., Roca, E., Guerrero, M., Cussó, R., Irurtia, A., Nescolarde, L., Brotons, D., Bedini, J. L., & Cadefau, J. A. (2015). Sarcomere Disruptions of Slow Fiber Resulting From Mountain Ultramarathon. International Journal of Sports Physiology and Performance, 10(8), 1041–1047. https://doi.org/10.1123/ijspp.2014-0267

Eble, D. M., Spragia, M. L., Ferguson, A. G., & Samarel, A. M. (1999). Sarcomeric myosin heavy chain is degraded by the proteasome. Cell and Tissue Research, 296(3), 541–548. https://doi.org/92960541.441 [pii]

Escamilla, R. F., Ionno, M., deMahy, M. S., Fleisig, G. S., Wilk, K. E., Yamashiro, K., Mikla, T., Paulos, L., &

Andrews, J. R. (2012). Comparison of three baseball-specific 6-week training programs on throwing velocity in high school baseball players. Journal of Strength and Conditioning Research, 26(7), 1767–1781. https://doi.org/10.1519/JSC.0b013e3182578301

Frere, J., L’Hermette, M., Slawinski, J., & Tourny-Chollet, C. (2010). Mechanics of pole vaulting: a review. Sports Biomechanics, 9(2), 123–138. https://doi.org/10.1080/14763141.2010.492430

Frère, J., Sanchez, H., Homo, S., Rabita, G., Morin, J. B., & Cassirame, J. (2017). Influence of pole carriage on sprint mechanical properties during pole vault run-up. Computer Methods in Biomechanics and Biomedical Engineering, 20. https://doi.org/10.1080/10255842.2017.1382872

Goll, D. E., Neti, G., Mares, S. W., & Thompson, V. F. (2008). Myofibrillar protein turnover: the proteasome and the calpains. Journal of Animal Science, 86(14 Suppl), E19-35. https://doi.org/jas.2007-0395 [pii] 10.2527/jas.2007-0395

Gorostiaga, E. M., Navarro-Amezqueta, I., Calbet, J. A., Hellsten, Y., Cusso, R., Guerrero, M., Granados, C., Gon-zalez-Izal, M., Ibanez, J., & Izquierdo, M. (2012). Energy metabolism during repeated sets of leg press exercise leading to failure or not. PLoS One, 7(7), e40621. https://doi.org/10.1371/journal.pone.0040621

Gorostiaga, E. M., Navarro-Amezqueta, I., Calbet, J. A., Sanchez-Medina, L., Cusso, R., Guerrero, M., Granados, C., Gonzalez-Izal, M., Ibanez, J., & Izquierdo, M. (2014). Blood ammonia and lactate as markers of muscle me-tabolites during leg press exercise. Journal of Strength and Conditioning Research, 28(10), 2775–2785. https://doi.org/10.1519/JSC.0000000000000496

Gorostiaga, E. M., Navarro-Amézqueta, I., Cusso, R., Hellsten, Y., Calbet, J. A. L., Guerrero, M., Granados, C., Gozález-Izal, M., Ibáñez, J., & Izquierdo, M. (2010). Anaerobic energy expenditure and mechanical efficiency during exhaustive leg press exercise. PLoS ONE, 5(10). https://doi.org/10.1371/journal.pone.0013486

Gross, M., Greeley, N. B., & Hübner, K. (2020). Prioritizing physical determinants of international elite pole vaulting performance. Journal of Strength and Conditioning Research, 34(1). https://doi.org/10.1519/JSC.0000000000003053

Guerrero, M., Carmona, G., Rodas, G., Cadefau, J. A., Maestro, A., & Cussó, R. (2019). Assessment of muscle fiber adaptation in footballers using a new ELISA assay of myosin isoforms. The Journal of Sports Medicine and Physical Fit-ness, 59(11). https://doi.org/10.23736/S0022-4707.19.09463-5

Korhonen, M. T., Cristea, A., Alen, M., Hakkinen, K., Sipila, S., Mero, A., Viitasalo, J. T., Larsson, L., & Suominen, H. (2006). Aging, muscle fiber type, and contractile function in sprint-trained athletes. Journal of Applied Physiology, 101(3), 906–917. https://doi.org/00299.2006 [pii] 10.1152/japplphysiol.00299.2006

Kraemer, W. J., Noble, B. J., Clark, M. J., & Culver, B. W. (1987). Physiologic responses to heavy-resistance exer-cise with very short rest periods. International Journal of Sports Medicine, 8(4), 247–252. https://doi.org/10.1055/s-2008-1025663

Kusnanik, N. W., Ayubi, N., Herawati, L., Jatmiko, T., Muin, Abd., & Bird, S. P. (2023). Curcumin reduce creatine kinase (CK) levels without decreasing malondialdehyde (MDA) levels after 24 hours of high-intensity physical ex-ercise. Retos, 48, 878–882. https://doi.org/10.47197/retos.v48.96966

Liu, G., Nguang, S. K., & Zhang, Y. (2011). Pole vault performance for anthropometric variability via a dynamical optimal control model. Journal of Biomechanics, 44(3), 436–441. https://doi.org/10.1016/j.jbiomech.2010.09.025 S0021-9290(10)00540-3 [pii]

Pan, N., Wu, Y., Yang, B., Zhang, M., He, Y., Wang, Z., Tan, L., & Zhang, L. (2023). The liver and blood cells are responsible for creatine kinase clearance in blood Circulation: A retrospective study among different human diseas-es. Clinica Chimica Acta, 544. https://doi.org/10.1016/j.cca.2023.117335

Paulsen, G., Mikkelsen, U. R., Raastad, T., & Peake, J. M. (2012). Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exercise and Immunology Reviews, 18, 42–97.

Sargeant, A. J. (2007). Structural and functional determinants of human muscle power. Experimental Physiology, 92(2), 323–331. https://doi.org/expphysiol.2006.034322 [pii] 10.1113/expphysiol.2006.034322

Schantz, P. G., & Henriksson, J. (1987). Enzyme levels of the NADH shuttle systems: measurements in isolated mus-cle fibres from humans of differing physical activity. Acta Physiologica Scandinavica, 129(4), 505–515. https://doi.org/10.1111/j.1748-1716.1987.tb08090.x

Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiology Reviews, 91(4), 1447–1531. https://doi.org/10.1152/physrev.00031.2010 91/4/1447 [pii]

Valencia Sánchez, W. G., Hoyos Manrique, J. E., Bedoya Chavarría, W. E., & Agudelo Velásquez, C. A. (2023). ¿Existen diferencias en la fuerza máxima, la flexibilidad y la composición corporal en los competidores de Cross-Fit® según su categoría? Retos, 47, 866–877. https://doi.org/10.47197/retos.v47.95614

Van Vossel, K., Hardeel, J., Van de Casteele, F., Van der Stede, T., Weyns, A., Boone, J., Blemker, S. S., Lievens, E., & Derave, W. (2023). Can muscle typology explain the inter-individual variability in resistance training adapta-tions? Journal of Physiology, 601(12). https://doi.org/10.1113/JP284442

Westerblad, H., Bruton, J. D., & Katz, A. (2010). Skeletal muscle: energy metabolism, fiber types, fatigue and adapt-ability. Experimental Cell Research, 316(18), 3093–3099. https://doi.org/10.1016/j.yexcr.2010.05.019 S0014-4827(10)00282-X [pii]

Wisløff, U., Castagna, C., Helgerud, J., Jones, R., & Hoff, J. (2004). Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. British Journal of Sports Medicine, 38(3). https://doi.org/10.1136/bjsm.2002.002071

Yamashita, K., & Yoshioka, T. (1991). Profiles of creatine kinase isoenzyme compositions in single muscle fibres of different types. Journal Muscle Research and Cell Motility, 12(1), 37–44.

Zakaria, A., Washif, J., Lim, B., & Nosaka, K. (2023). Effects of Eurycoma longifolia Jack supplementation on eccen-tric leg press exercise-induced muscle damage in rugby players. Biology of Sport, 40(3), 691–697. https://doi.org/10.5114/biolsport.2023.119290

Descargas

Publicado

2024-01-01

Cómo citar

Carmona, G. (2024). Daño selectivo de fibras rápidas tras un ejercicio en prensa de piernas hasta al fallo volitivo: estudio de caso de un saltador de pértiga (Selective fast fiber damage after leg press exercise leading to failure: a pole vaulter case report). Retos, 51, 1375–1380. https://doi.org/10.47197/retos.v51.98084

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas