Efectos del ejercicio sobre la glucosa y el lactato en triatletas amateurs

Autores/as

DOI:

https://doi.org/10.47197/retos.v62.106123

Palabras clave:

Glucemia, Lactato, Triatletas, Ciclismo, Carrera

Resumen

Objetivo: En este estudio se comparó la respuesta la glucemia y lactato, durante el ejercicio y la recuperación en la carrera y ciclismo en un grupo de triatletas amateurs. Métodos: Durante el año 2019, 59 triatletas amateurs hombres (32,9±4,55 años) de la provincia de Barcelona fueron asignados aleatoriamente a una prueba de esfuerzo en tapiz rodante (n=30) o a una prueba en cicloergómetro (n=29). Se obtuvieron parámetros ventilatorios, glucemia y lactato, antes de la prueba en reposo, al final de la prueba y, a los 5min de recuperación. Resultados: Al finalizar la prueba y durante la recuperación, la glucemia fue mayor en el grupo de tapiz rodante que en el grupo de cicloergómetro (p<0,001). Al finalizar, el lactato fue mayor en cicloergómetro que en tapiz rodante (p=0,039). Conclusiones: Los resultados de este estudio revelan diferencias metabólicas significativas entre la carrera y el ciclismo durante pruebas de esfuerzo máximo. La glucemia fue notablemente más elevada al finalizar la prueba en tapiz rodante y durante la recuperación, en comparación con el cicloergómetro. Esto sugiere una mayor liberación de glucosa durante la carrera, posiblemente debido al mayor reclutamiento muscular y demanda energética. En contraste, los niveles de lactato fueron superiores tras la prueba en cicloergómetro, lo que podría atribuirse a un esfuerzo más localizado en grupos musculares específicos. Nuestros resultados deberían ser tenidos en cuenta por entrenadores y triatletas a la hora de diseñar sus programas de entrenamiento para promover una mayor eficacia en la preparación física y el rendimiento.

Citas

Alghannam, A. F., Ghaith, M. M., & Alhussain, M. H. (2021). Regulation of energy substrate metabolism in endurance exercise. International Journal of Environmental Research and Public Health, 18, 4963. https://doi.org/10.3390/ijerph18094963

Arkinstall, M. J., Bruce, C. R., Nikolopoulos, V., Garnham, A. P., & Hawley, J. A. (2001). Effect of carbohydrate ingestion on metabolism during running and cycling. Journal of Applied Physiology, 91(5), 2125–2134. https://doi.org/10.1152/jappl.2001.91.5.2125

Basset, F. A., & Boulay, M. R. (2000). Specificity of treadmill and cycle ergometer tests in triathletes, runners and cyclists. European Journal of Applied Physiology, 81(3), 214–221. https://doi.org/10.1007/S004210050033

Bijker, K. E., de Groot, G., & Hollander, A. P. (2002). Differences in leg muscle activity during running and cycling in humans. European Journal of Applied Physiology, 87(6), 556–561. https://doi.org/10.1007/s00421-002-0663-8

Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377–381.

Brooks, G. A. (2020). The precious few grams of glucose during exercise. International Journal of Molecular Sciences, 21(16), 5733. https://doi.org/10.3390/ijms21165733

Brooks, G. A., Arevalo, J. A., Osmond, A. D., Leija, R. G., Curl, C. C., & Tovar, A. P. (2022). Lactate in contemporary biology: a phoenix risen. Journal of Physiology, 600(5), 1229–1251. https://doi.org/10.1113/JP280955

Brooks, G. A., Curl, C. C., Leija, R. G., Osmond, A. D., Duong, J. J., & Arevalo, J. A. (2022). Tracing the lactate shuttle to the mitochondrial reticulum. Experimental and Molecular Medicine, 54(9), 1332–1347. https://doi.org/10.1038/s12276-022-00802-3

Brooks, G. A., Osmond, A. D., Leija, R. G., Curl, C. C., Arevalo, J. A., Duong, J. J., & Horning, M. A. (2022). The blood lactate/pyruvate equilibrium affair. American Journal of Physiology - Endocrinology and Metabolism, 322(1), E34–E43. https://doi.org/10.1152/AJPENDO.00270.2021

Burke, L. M., Whitfield, J., Heikura, I. A., Ross, M. L. R., Tee, N., Forbes, S. F., Hall, R., McKay, A. K. A., Wallett, A. M., & Sharma, A. P. (2021). Adaptation to a low carbohydrate high fat diet is rapid but impairs endurance exercise metabolism and performance despite enhanced glycogen availability. Journal of Physiology, 599(3), 771–790. https://doi.org/10.1113/JP280221

Capostagno, B., & Bosch, A. (2010). Higher fat oxidation in running than cycling at the same exercise intensities. International Journal of Sport Nutrition and Exercise Metabolism, 20(1), 44–55. https://doi.org/10.1123/ijsnem.20.1.44

Carter, H., Jones, A. M., Barstow, T. J., Burnley, M., Williams, C. A., & Doust, J. H. (2000). Oxygen uptake kinetics in treadmill running and cycle ergometry: A comparison. Journal of Applied Physiology, 89(3), 899–907. https://doi.org/10.1152/jappl.2000.89.3.899

Cejuela, R. S.-P. S. (2023). Training characteristics and performance of two male elite short-distance triathletes: From junior to “world-class.” Scandinavian Journal of Medicine & Science in Sports, 33(september 2016), 2444–2456.

Colberg, S. R., Sigal, R. J., Fernhall, B., Regensteiner, J. G., Blissmer, B. J., Rubin, R. R., Chasan-Taber, L., Albright, A. L., & Braun, B. (2010). Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care, 33(12), e147-67. https://doi.org/10.2337/dc10-9990

Ferguson, B. S., Rogatzki, M. J., Goodwin, M. L., Kane, D. A., Rightmire, Z., Gladden, L. B., Matthew, ·, Goodwin, L., & Gladden, · L Bruce. (2018). Lactate metabolism: historical context, prior misinterpretations, and current understanding. European Journal of Applied Physiology, 118, 691–728.

Fernández Vieitez, J. A., & Ricardo Aguilera, R. (2001). Estimación de la masa muscular por diferentes ecuaciones antropométricas en levantadores de pesas de alto nivel. Archivos de Medicina Del Deporte, 18(86), 585–591.

Flores-Opazo, M., McGee, S. L., & Hargreaves, M. (2020). Exercise and GLUT4. Exercise and Sport Sciences Reviews, 48(3), 110–118. https://doi.org/10.1249/JES.0000000000000224

Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817–828. https://doi.org/10.1038/s42255-020-0251-4

Hearris, M. A., Hammond, K. M., Fell, J. M., & Morton, J. P. (2018). Regulation of muscle glycogen metabolism during exercise: Implications for endurance performance and training adaptations. Nutrients, 10(3), 298. https://doi.org/10.3390/nu10030298

Hue, O., Le Gallais, D., Chollet, D., Boussana, A., & Préfaut, C. (1997). The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes. European Journal of Applied Physiology and Occupational Physiology, 77(1–2), 98–105. https://doi.org/10.1007/s004210050306

Jeukendrup, A. E., Wagenmakers, A. J. M., Stegen, J. H. C. H., Gijsen, A. P., Brouns, F., & Saris, W. H. M. (1999). Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. American Journal of Physiology - Endocrinology and Metabolism, 276(4 39-4). https://doi.org/10.1152/ajpendo.1999.276.4.e672

King, A. J., O’Hara, J. P., Morrison, D. J., Preston, T., & King, R. F. G. J. (2018). Carbohydrate dose influences liver and muscle glycogen oxidation and performance during prolonged exercise. Physiological Reports, 6(1), e13555. https://doi.org/10.14814/phy2.13555

Lawrence, J. H., & Gofman, J. W. (Eds. ). (2013). Advances in Biological and Medical Physics: Volume 9.

Mallol, M., Cámara, J., Calleja-González, J., Yanci, J., & Mejuto, G. (2015). Triathlon and control the load by perceived exertion | El Triatlón y el control de la carga mediante la perceptión del esfuerzo. Archivos de Medicina Del Deporte, 32(3), 164–168.

Malone, J. J., Hulton, A. T., & MacLaren, D. P. M. (2021). Exogenous carbohydrate and regulation of muscle carbohydrate utilisation during exercise. European Journal of Applied Physiology, 121(5), 1255–1269. https://doi.org/10.1007/s00421-021-04609-4

Marliss, E. B., & Vranic, M. (2002). Intense exercise has unique effects on both insulin release and its role in glucoregulation: implications for diabetes. Diabetes, 51(1), 271–283. https://doi.org/10.2337/diabetes.51.2007.S271

Millet, G. P., Vleck, V. E., & Bentley, D. J. (2009). Physiological differences between cycling and running: lessons from triathletes. Sports Medicine, 39(3), 179–206. https://doi.org/10.2165/00007256-200939030-00002

Millet, G. P., Vleck, V. E., & Bentley, D. J. (2011). Physiological requirements in triathlon. Journal of Human Sport and Exercise, 6(2), 184–204. https://doi.org/10.4100/jhse.2011.62.01

Muros, J. J., Knox, E., Hinojosa-Nogueira, D., Rufián-Henares, J., & Zabala, M. (2021). Profiles for identifying problematic dietary habits in a sample of recreational Spanish cyclists and triathletes. Scientific Reports, 11(1), 15193. https://doi.org/10.1038/s41598-021-94660-0

Pfeiffer, B., Stellingwerff, T., Zaltas, E., Hodgson, A. B., & Jeukendrup, A. E. (2011). Carbohydrate Oxidation from a Drink during Running Compared with Cycling Exercise. Medicine & Science in Sports & Exercise, 43(2), 327–334. https://doi.org/10.1249/MSS.0b013e3181ebc488

Podlogar, T., & Wallis, G. A. (2022). New Horizons in Carbohydrate Research and Application for Endurance Athletes. Sports Medicine, 52(s1), 5–23. https://doi.org/10.1007/s40279-022-01757-1

Schabort, E. J., Killian, S. C., St Clair Gibson, A., Hawley, J. A., & Noakes, T. D. (2000). Prediction of triathlon race time from laboratory testing in national triathletes. Medicine and Science in Sports and Exercise, 32(4), 844–849. https://doi.org/10.1097/00005768-200004000-00018

Scott, C. B., Littlefield, N. D., Chason, J. D., Bunker, M. P., & Asselin, E. M. (2006). Differences in oxygen uptake but equivalent energy expenditure between a brief bout of cycling and running. Nutrition and Metabolism, 3(1), 1. https://doi.org/10.1186/1743-7075-3-1

Stewart, J. A., Merritt, E. K., Lidstone, D. E., McBride, J. M., & Zwetsloot, K. A. (2022). Prolonged cycling lowers subsequent running mechanical efficiency in collegiate triathletes. BMC Sports Science, Medicine and Rehabilitation, 14(1), 1–7. https://doi.org/10.1186/s13102-022-00543-w

Tsintzas, K., & Williams, C. (1998). Human muscle glycogen metabolism during exercise - Effect of carbohydrate supplementation. Sports Medicine, 25(1), 7–23. https://doi.org/10.2165/00007256-199825010-00002

Vavřička, J., Brož, P., Follprecht, D., Novák, J., & Kroužecký, A. (2024). Modern Perspective of Lactate Metabolism. Physiological Research, 73(4), 499–514. https://doi.org/10.33549/physiolres.935331

Wiecha, S., Kasiak, P. S., Szwed, P., Kowalski, T., Cieśliński, I., Postuła, M., & Klusiewicz, A. (2023). VO2max prediction based on submaximal cardiorespiratory relationships and body composition in male runners and cyclists: a population study. ELife, 12, e86291. https://doi.org/10.7554/eLife.86291

World Conference on Kinanthropometry Chile, 2018. (2019). Ciencias del Ejercicio Físico y Salud, no1.

World Medical Association. (2013). World medical association declaration of Helsinki. JAMA, 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053

Descargas

Publicado

2025-01-01

Cómo citar

Galan Carracedo, J. ., Vivet Comas, A., García , M. S., Niño Méndez, O. A., Melo Tavera, J. C., Suarez Segade, A., & Oviedo, G. R. (2025). Efectos del ejercicio sobre la glucosa y el lactato en triatletas amateurs. Retos, 62, 807–814. https://doi.org/10.47197/retos.v62.106123

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas