Biomechanical Fundamentals of Hand Standing and Somersaults: The Impact of Coaching Interference

Authors

  • Ibtehal Alkhawaldeh mutah university

DOI:

https://doi.org/10.47197/retos.v51.99859

Keywords:

somersaults, hand standing, biomechanical fundamentals, coaching interference.

Abstract

Biomechanics is the leading sports science concerned with movement technique. This is particularly significant in gymnastics, where the performance styles of the top gymnasts serve as examples for others to emulate, we aimed to conduct this study to evaluate the biomechanical fundamentals of hand standing and somersaulting between the two groups with and without coach interferences. A comparative study was conducted in which 24 highly competitive national standard healthy male gymnasts were enrolled. The participants were divided into two equal groups each group consisting of 12 players. One group was interfered and additionally trained by a coach and another group served as control in which there was no additional interference of coach. The researchers filmed the performance via canon EOS 100D cameras, while the motion analysis was done using the Kinovea motion analysis program. For hand standing, balance time and postural execution was observed between two groups. For somersault, c-motion guidelines were used to attach markers to the joints and limbs of participants to observe the angle and angular velocity of joints. A total of 24 participants (12 in each group) were analysed. Results was found out that the angles of ankle, knee, hip and shoulder at toe off time was found statistically significant. The angular velocity at the time of initial contact and toe off between the two groups was statistically significant. The hand standing between two groups was found son significant. The study results revealed that the angles of participant under coach interferences were found effective in somersault. In light of the results, it is recommended that joint angles should be focused to acquire this technique more effectively.

Keywords: somersaults, hand standing, biomechanical fundamentals, coaching interference, gymnastic.

References

Al-beshlawi, M. H. (2010). Dynamics of performing front somersault (straight) individually and within kinetic routines of floor exercises. World Journal of Sport Sciences, 3: 42-48.

Bartllet R. (2009). Introduction to sports biomechanics. London: Routledge Taylor & Francis Group,

Brewin, M. A., and Kerwin, D. G. (2003). Indirect estimation of cable tension during gymnastic movements on rings”. Sports Engineering, 6(3): 177-185.

Campos Granell, J., Gutiérrez Dávila, M., & Campos Coll, J. M. (2022). Estudio de las temáticas y contenidos de las tesis doctorales realizadas en España sobre Biomecánica Deportiva”. Retos, 44: 525-533.

Cronin, J. B., McNair, P. J and Marshall, R. N. (2001). Magnitude and decay of stretch-induced enhancement of power output. European Journal of Applied Physiology, 84(6): 575-581.

de Andrade, V. L., Vieira, L. P., Kalva-Filho, C. A., and Santiago, P. R. P. (2021). Critical points of performance in re-peated sprint: A kinematic approach. Science & Sports, 36(4): e141-e150

Dos’Santos, T., Thomas, C., Comfort, P and Jones, P. A. (2018). The effect of angle and velocity on change of direction biomechanics: An angle-velocity trade-off. Sports medicine, 48(10): 2235-2253.

Gharaat, M. A., Sheykhlouvand, M and Eidi, L. A. (2020). Performance and recovery: effects of caffeine on a 2000-m rowing ergometer”. Sport Sciences for Health, 16(3): 531-542.

Ghavami, A., Hosseini, F. S., Mohammadzadeh, H., Maleki, B and Borhani, H. (2012). The effect of observing animated model and static images and combined model on motor learning of handstand balance skill. Development and Motor Learn-ing, 4(10): 143–156

Hedbávný, P., Bago, G and Kalichová, M. (2013). Influence of strength abilities on quality of the handstand. International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 7(10): 602–608.

Irwin, G and Kerwin, D. G. (2009). The influence of the vaulting table on the handspring front somersault. Sports Biome-chanics, 8(2), 114-128.

Kerwin, D. G and Hiley, M. J. (2003). Estimation of reaction forces in high bar swinging. Sports Engineering, 6(1): 21-30.

Knudson, D. (2007). Fundamentals of biomechanics, Chico: Springer,

Kochanowicz, A., Niespodziński, B., Marina, M., Mieszkowski, J., Kochanowicz, K.and Zasada, M. (2017). Changes in the muscle activity of gymnasts during a handstand on various apparatus. Journal of Strength and Conditioning Research. Advance online publication.

Köklü, Y., Alemdaroğlu, U., Aksoy, İ and Gürmen, İ. (2017). Comparison of physiological responses and technical actions in full-court games in young basketball players. Science & Sports, 32(6): e215-e220.

Krol H and Mynarski W. (2010). Effect of increased load on vertical jump mechanical characteristics in acrobats”. Acta of Bioengineering and Biomechanics, 12(4): 33-7.

Król, H., Klyszcz-Morciniec, M., Sobota, G and Nowak, K. (2016). The complex analysis of movement in the evaluation of the backward somersault performance”. Physical Activity Review, 4: 28-39.

Matos, V. A. F., de Carvalho, C. S and Fayh, A. P. T. (2020). Seasonal changes in body composition and cardio metabolic health biomarkers in professional soccer players: a longitudinal study. Sport Sciences for Health, 16(3): 419-424.

McNitt-Gray, J. L. (1993). Kinetics of the lower extremities during drop landings from three heights. Journal of biomechan-ics, 26(9): 1037-1046.

Nyman, E. (2020). Biomechanics of gymnastics. Gymnastics medicine: Evaluation, management and rehabilitation, 27-54.‏

Opala-Berdzik, A., Głowacka, M and Juras, G. (2021). Postural sway in young female artistic and acrobatic gymnasts ac-cording to training experience and anthropometric characteristics. BMC Sports Science, Medicine and Rehabilitation, 13(1): 1-11

Rohleder, J and Vogt, T. (2018). Teaching novices the handstand: A practical approach of different sport-specific feedback concepts on movement learning. Science of Gymnastics Journal, 10(1).

Schmidt, R. A and Lee, T. D. (2005). Motor control and learning: A behavioural emphasis. Champaign, Ill. Human Kinetics.

Suga, T., Terada, M., Tomoo, K., Miyake, Y., Tanaka, T., Ueno, H and Isaka, T. (2021). “Association between plantar flexor muscle volume and dorsiflexion flexibility in healthy young males: ultrasonography and magnetic resonance imag-ing studies”. BMC Sports Science, Medicine and Rehabilitation, 13(1): 1-8.

Uzunov, V. (2008). The handstand: A four stage training model. Gym Coach, 2:52–59.

van Sint Jan, S. (2007). Color atlas of skeletal landmark definitions E-book: guidelines for reproducible manual and virtual palpations. Elsevier Health Sciences.

Yeadon, M. R and Hiley, M. J. (2018). The limits of aerial techniques for producing twist in forward 1½ somersault dives. Human movement science, 58: 97-107.

Yeadon, M. R and Trewartha, G. (2003). Control strategy for a hand balance. Motor Control, 7(4): 411–430.

Yeadon, M. R., Atha, J and Hales, F. D. (1990). The simulation of aerial movement—IV. A computer simulation mod-el. Journal of biomechanics, 23(1): 85-89.

Downloads

Published

2024-01-01

How to Cite

Alkhawaldeh, I. (2024). Biomechanical Fundamentals of Hand Standing and Somersaults: The Impact of Coaching Interference. Retos, 51, 1–5. https://doi.org/10.47197/retos.v51.99859

Issue

Section

Original Research Article