Designing an artificial intelligence-powered video assistant referee system for team sports using computer vision

Authors

  • Maigul Zhekambayeva Satbayev University, Almaty, Kazakhstan
  • Meruert Yerekesheva K. Zhubanov Aktobe Regional University, Aktobe, Kazakhstan
  • Nurmambek Ramashov South Kazakhstan State Pedagogical University, Shymkent, Kazakhstan ramashovn@mail.ru
  • Yermek Seidakhmetov Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan, Kazakhstan
  • Bakhytzhan Kulambayev Turan University

DOI:

https://doi.org/10.47197/retos.v61.110300

Keywords:

AI-powered VAR, sports officiating, computer vision, decision-making accuracy, efficiency in sports, Cohen's Kappa, chi-squared test, paired t-tests, technology in sports, digital officiating systems

Abstract

This paper investigates the efficacy of an AI-powered Video Assistant Referee (VAR) system in enhancing officiating accuracy, efficiency, and consistency in team sports. Employing a combination of artificial intelligence and computer vision, the system was tested in a local championship in Almaty, involving eight football teams. Through the analysis of decision-making accuracy, time efficiency, and consistency across officiating scenarios, the study employed chi-squared tests, paired t-tests, and Cohen's Kappa statistics to quantitatively assess improvements over traditional VAR systems. Results indicated that the AI-powered VAR system significantly increased the accuracy of decisions and reduced the decision-making time, thereby maintaining the fluidity of gameplay. Although the system also demonstrated enhanced consistency in officiating decisions, it highlighted areas needing further refinement to handle complex game situations effectively. The findings suggest that AI integration into sports officiating can substantially benefit the fairness and dynamics of team sports, provided that ongoing technological advancements continue to address current limitations. This study contributes to the growing body of knowledge on the intersection of technology and sports, offering a framework for future enhancements in digital officiating systems.

References

Mohammed, A. H., Othman, Z. J., & Abdullah, A. I. (2024). The Role of Artificial Intelligence in Enhancing Sports Analytics and Training. Cihan University-Erbil Scientific Journal, 8(1), 58-62.

Joshi, R. C., Singh, N., Sharma, A. K., Burget, R., & Dutta, M. K. (2024). AI-SenseVision: A Low-Cost Artificial-Intelligence-Based Robust and Real-Time Assistance for Visually Impaired People. IEEE Transactions on Human-Machine Systems.

Mir, H., Zaraatgari, R., & Sotoudeh, R. (2021). Improving the food and agriculture sector tehran stock exchange by using artificial intelligence. Agricultural Marketing and Commercialization Journal, 5(2), 90-114.

Sætre, S. M. (2022). Laying The Foundation For an Intelligence-Powered Extendable Digital Twin Framework For Au-tonomous Sea Vessels (Master's thesis, NTNU).

Omarov, B., Omarov, N., Mamutov, Q., Kissebaev, Z., Anarbayev, A., Tastanov, A., & Yessirkepov, Z. (2024). Exami-nation of the augmented reality exercise monitoring system as an adjunct tool for prospective teacher trainers. Retos: nuevas tendencias en educación física, deporte y recreación, (58), 85-94.

LNC Prakash, K., Ravva, S. K., Rathnamma, M. V., & Suryanarayana, G. (2023). AI Applications of Drones. Drone Technology: Future Trends and Practical Applications, 153-182.

Villarrasa-Sapiña, I., Espinosa Cabezas, F., & Monfort-Torres, G. (2024). Video assistant referee on Twitter: a text-mining-based analysis of fan sentiment. Retos, 53, 91–99. https://doi.org/10.47197/retos.v53.102423

Huang, F. (2022). Design of diversified teaching platform of college aerobics course based on artificial intelligence. Journal of computational methods in sciences and engineering, 22(2), 385-397.

Doskarayev, B., Omarov, N., Omarov, B., Ismagulova, Z., Kozhamkulova, Z., Nurlybaeva, E., & Kasimova, G. (2023). Development of Computer Vision-enabled Augmented Reality Games to Increase Motivation for Sports. International Journal of Advanced Computer Science and Applications, 14(4).

Soorki, M. N., Saad, W., Bennis, M., & Hong, C. S. (2021). Ultra-reliable indoor millimeter wave communications using multiple artificial intelligence-powered intelligent surfaces. IEEE Transactions on Communications, 69(11), 7444-7457.

Altayeva, A., Omarov, B., & Im Cho, Y. (2018, January). Towards smart city platform intelligence: PI decoupling math model for temperature and humidity control. In 2018 IEEE International Conference on Big Data and Smart Compu-ting (BigComp) (pp. 693-696). IEEE.

Sun, T. (2021). Artificial intelligence powered personality assessment: A multidimensional psychometric natural lan-guage processing perspective (Doctoral dissertation, University of Illinois at Urbana-Champaign).

Okilanda, A. ., Soniawan, V., Irawan, R., Arifan, I., Batubara, R., Fadlan, A. R., Marta, I. A., Tulyakul, S., Crisari, S., Ahmed, M., & Hasan, B. (2024). Qatar 2022 World Cup Scorer Analysis. Retos, 54, 10–17. https://doi.org/10.47197/retos.v54.102213

Meyer-Waarden, L., Cloarec, J., Adams, C., Aliman, D. N., & Wirth, V. (2021). Home, sweet home: How well-being shapes the adoption of artificial intelligence-powered apartments in smart cities. Systèmes d’information et manage-ment, 26(4), 55-88.

Omarov, B., Altayeva, A., Turganbayeva, A., Abdulkarimova, G., Gusmanova, F., Sarbasova, A., ... & Omarov, N. (2019). Agent based modeling of smart grids in smart cities. In Electronic Governance and Open Society: Challenges in Eurasia: 5th International Conference, EGOSE 2018, St. Petersburg, Russia, November 14-16, 2018, Revised Se-lected Papers 5 (pp. 3-13). Springer International Publishing.

Sarker, I. H. (2024). AI-driven cybersecurity and threat intelligence: cyber automation, intelligent decision-making and explainability. Springer Nature.

Moravec, V., Hynek, N., Gavurova, B., & Kubak, M. (2024). Everyday artificial intelligence unveiled: Societal aware-ness of technological transformation. Oeconomia Copernicana, 15(2), 367-406.

Ambit, M. (2024). Artificial Intelligence Tools: Teachers' Pedagogical Adaptation in English Curriculum. Nexus Interna-tional Journal of Science and Education, 1(2).

Omarov, B., Altayeva, A., & Cho, Y. I. (2017). Smart building climate control considering indoor and outdoor parame-ters. In Computer Information Systems and Industrial Management: 16th IFIP TC8 International Conference, CISIM 2017, Bialystok, Poland, June 16-18, 2017, Proceedings 16 (pp. 412-422). Springer International Publishing.

Oravec, J. A. (2024). From Polygraphs to Truth Machines: Artificial Intelligence in Lie Detection. Critical Humanities, 2(2), 3.

Kendzierskyj, S., Jahankhani, H., & Hussien, O. A. A. M. (2024). Space Governance Frameworks and the Role of AI and Quantum Computing. In Space Governance: Challenges, Threats and Countermeasures (pp. 1-39). Cham: Springer Nature Switzerland.

Omarov, N., Omarov, B., Azhibekova, Z., & Omarov, B. (2024). Applying an augmented reality game-based learning environment in physical education classes to enhance sports motivation. Retos, 60, 269–278. https://doi.org/10.47197/retos.v60.109170

Askari, M. R., Ahmadasas, M., Shahidehpour, A., Rashid, M., Quinn, L., Park, M., & Cinar, A. (2023). Multivariable automated insulin delivery system for handling planned and spontaneous physical activities. Journal of Diabetes Sci-ence and Technology, 17(6), 1456-1469.

Jayasundara, C. C. (2022). Prediction of Marketing by the Consumer Analytics. In Big Data Analytics (pp. 77-118). Auerbach Publications.

Kim, T., Molina, M. D., Rheu, M., Zhan, E. S., & Peng, W. (2023, April). One AI does not fit all: A cluster analysis of the laypeople’s perception of AI roles. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1-20).

Deutsch, M. (2023). Design, implementation and application of a software framework to assess the game experience of a video game with ML-based adapting enemies (Doctoral dissertation, University of Applied Sciences Technikum Wien).

Ghaemi, H., Jamshidi, S., Mashreghi, M., Ahmadabadi, M. N., & Kebriaei, H. (2024). Risk Sensitivity in Markov Games and Multi-Agent Reinforcement Learning: A Systematic Review. arXiv preprint arXiv:2406.06041.

Luanglath, I. (2019). External Shocks and Regime Shift of ASEAN Economies. NIDA Development Journal, 59(4).

Tabagchi Milan, S., Jafari Navimipour, N., Lohi Bavil, H., & Yalcin, S. (2023). A QoS-based technique for load balancing in green cloud computing using an artificial bee colony algorithm. Journal of Experimental & Theoretical Artificial In-telligence, 1-36.

Adil, M., Khan, M. K., Kumar, N., Attique, M., Farouk, A., Guizani, M., & Jin, Z. (2024). Healthcare internet of things: Security threats, challenges and future research directions. IEEE Internet of Things Journal.

Omarov, B., Batyrbekov, A., Suliman, A., Omarov, B., Sabdenbekov, Y., & Aknazarov, S. (2020, November). Electron-ic stethoscope for detecting heart abnormalities in athletes. In 2020 21st International Arab Conference on Infor-mation Technology (ACIT) (pp. 1-5). IEEE.

George Karimpanal, T., & Bouffanais, R. (2019). Self-organizing maps for storage and transfer of knowledge in rein-forcement learning. Adaptive Behavior, 27(2), 111-126.

Luanglath, I. (2019). External Shocks and Regime Shift of ASEAN Economies. NIDA Development Journal, 59(4).

Abramov, N., Lankegowda, H., Liu, S., Barazzetti, L., Beltracchi, C., & Ruttico, P. (2024). Implementing Immersive Worlds for Metaverse-Based Participatory Design through Photogrammetry and Blockchain. ISPRS International Journal of Geo-Information, 13(6), 211.

Li, D., Zhi, B., Schoenherr, T., & Wang, X. (2023). Developing capabilities for supply chain resilience in a post-COVID world: A machine learning-based thematic analysis. IISE Transactions, 55(12), 1256-1276.

Hennig-Thurau, T., Houston, M. B., Hennig-Thurau, T., & Houston, M. B. (2019). Entertainment Communication Decisions, Episode 2:“Earned” Channels. Entertainment Science: Data Analytics and Practical Theory for Movies, Games, Books, and Music, 587-677.

Galiani, S., Gálvez, R. H., & Nachman, I. (2023). Unveiling specialization trends in economics research: A large-scale study using natural language processing and citation Analysis (No. w31295). National Bureau of Economic Research.

Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73.

Divyam, A. S., Singh, B., Rai, J. N., Datta, J., Soria, F. R. C., Ravikant, U. C., ... & Mannem, K. 5th International Con-ference on Communication and Electronics Systems (ICCES 2020). Development, 125, 24.

Menges, D., Sætre, S. M., & Rasheed, A. (2023, June). Digital Twin for Autonomous Surface Vessels to Generate Situa-tional Awareness. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 86878, p. V005T06A025). American Society of Mechanical Engineers.

Zhang, J., Xiang, Y., Wang, C., & Li, L. (2021). Representing and Modeling Group Option-Generation Process. Availa-ble at SSRN 3926444.

Tursynova, A., Omarov, B., Sakhipov, A., & Tukenova, N. (2022). Brain Stroke Lesion Segmentation Using Computed Tomography Images based on Modified U-Net Model with ResNet Blocks. International Journal of Online & Biomed-ical Engineering, 18(13).

Dai, J., & Moffatt, K. (2023). Enriching social sharing for the dementia community: insights from in-person and online social programs. ACM Transactions on Accessible Computing, 16(1), 1-33.

Jones, V. (2024). for Harm Reduction Activism in. Contemporary Drug Problems, 51(2), 67-88.

Downloads

Published

2024-12-01

How to Cite

Zhekambayeva, M., Yerekesheva, M., Ramashov, N., Seidakhmetov, Y., & Kulambayev, B. (2024). Designing an artificial intelligence-powered video assistant referee system for team sports using computer vision. Retos, 61, 1162–1170. https://doi.org/10.47197/retos.v61.110300

Issue

Section

Original Research Article