Use of a hand-worn accelerometer to measure hand differences in Grooved Pegboard Test

Authors

  • Tércio Apolinário-Souza Department of Physical Education and Dance. Universidade Federal do Rio Grande do Sul (UFRGS) https://orcid.org/0000-0002-2136-0238
  • Marco Antônio Cavalcanti Garcia Programa de pós-graduação em ciências da reabilitação e desempenho físico funcional da Universidade Federal de Juiz de Fora (UFJF),
  • Guilherme Menezes Lage Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais (UFMG)
  • Lucas Eduardo Antunes Bicalho Bicalho Department of Physiotherapy, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte – MG, Brazil.
  • Nathálya Marinho Gardênia de Holanda Nogueira Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais (UFMG)
  • Flávia Batalha Gomes Costa Programa de pós-graduação em ciências da reabilitação e desempenho físico funcional da Universidade Federal de Juiz de Fora (UFJF),
  • Lidiane Aparecida Fernandes Programa de pós-graduação em ciências da reabilitação e desempenho físico funcional da Universidade Federal de Juiz de Fora (UFJF), https://orcid.org/0000-0001-8909-1612

DOI:

https://doi.org/10.47197/retos.v61.108415

Keywords:

Motor control, Hemispheric specialization, laterality, hand function

Abstract

Research on laterality, which pertains to the preference for using one hand over the other in daily activities, has recently been a growing topic of investigation. Studies demonstrate that performance differences between the right and left hands arise from distinct strategies in utilizing information for movement execution. To conduct a more comprehensive analysis of these differences, we aimed to investigate various measures using a wrist accelerometer during the execution of a traditional tool to assess manual performance. The proposed hypothesis suggested that tasks performed with the right hand would exhibit shorter movement times due to more efficient real-time information processing. In contrast, tasks performed with the left hand would show shorter reaction times due to movement planning proficiency. Furthermore, we hypothesized that increased task complexity would make these differences more pronounced. The study revealed that, in the less complex task, the right hand outperformed the left hand in execution speed, whereas the left hand demonstrated faster reaction times in the more complex task. The task complexity highlighted the differences, emphasizing the impact of task demands on hand specialization. Using an accelerometer provided valuable insights, indicating potential avenues for refining assessment tools and analyzing manual control.

Keywords: motor control, hemispheric specialization, laterality, hand function, dexterity.

References

Albuquerque, M., Diniz, L., Silva, M., Paula, J., Neves, M., & Lage, G. (2017). Can eye fixation during the grooved peg-board test distinguish between planning and online correction? Perceptual and Motor Skills, 124(2), 380–392.

Batista, L. N., Apolinário-Souza, T., Amaral-Medeiros, D., & Fernandes, L. A. (2024). Influência do sexo e nível cognitivo na destreza manual em pessoas idosas. Corpoconsciência, 28, e16012.

Benda, R., Cavalcante, A., Lage, G., Santos, I., & Ugrinowitsch, H. (2006). Análise da assimetria nos padrões fundamentais arremessar e chutar em crianças. Revista Portuguesa de Ciências do Desporto, 6(2), 188–193.

Borod, J. C., Caron, H. S., & Kolff, E. (1984). Left-handers and right-handers compared on performance and preference measures of lateral dominance. British Journal of Psychology, 75, 177–186.

Boulinguez, P., Velay, J. L., & Nougier, V. (2001). Manual asymmetries in reaching movement control: Study of left-handers. Cortex, 37, 123–138.

Bryden, P. J., & Roy, E. A. (2005). A new method of administering the Grooved Pegboard Test: Performance as a function of handedness and sex. Brain and Cognition, 58(3), 258–268.

Bryden, P. J., Roy, E. A., Rohr, L. E., & Egilo, S. (2007). Task demands affect manual asymmetries in pegboard performance. Laterality, 12(4), 364–377.

Carson, R. G., Chua, R., Goodman, D., Byblow, W. D., & Elliott, D. (1995). The preparation of aiming movements. Brain and Cognition, 28(2), 133–154.

Collins, R. L. (1975). When left-handed mice live in right-handed worlds. Science, 187, 181–184.

Corballis, M. C. (2021). How many lateralities? Laterality, 26(3), 307–309.

Corey, D., Hurley, M., & Foundas, A. L. (2001). Identifying handedness groups via manual performance asymmetries: A multivariate approach. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 14(3), 144-152.

Elliott, D., Helsen, W. F., & Chua, R. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 1023–1044.

Estrada-Marce´n, N., López-Rubio, A., & Casterad-Seral, J. (2022). La lateralidad en el Karate: Estudio centrado en la praxis de los entrenadores y entrenadoras. Retos, 44, 806–815.

Fernandes, L. A., Apolinário-Souza, T., Castellano, G., Fortuna, B. C., & Lage, G. M. (2024). Hand differences in aiming task: A complementary spatial approach and analysis of dynamic brain networks with EEG. Behavioural Brain Research, 469, 114973.

Fernandes, L. A., Romano-Silva, M. A., Figueiredo, L. S., Otoni Parma, J., Apolinário-Souza, T., & Menezes Lage, G. (2022). Modulation of motor cortices on manual asymmetries. Kinesiology, 54(1), 15-24.

Fernandes, L. A., Souza, B. G. C. S., Sales, I. S., & Apolinário-Souza, T. (2018). Análise da complexidade da tarefa na assimetria manual no grooved pegboard test. Brazilian journal of motor behavior,12(1), 1-11.

Flowers, K. (1975). Handedness and controlled movement. British Journal of Psychology, 66(1), 39-52.

Heath, M. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control, 9, 281–311.

Heilman, K. M., & Abell, T. V. D. (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30(3), 327-327.

Hicks, R. E., Gualtieri, C. T., & Schroeder, S. R. (1983). Cognitive and motor components of bilateral transfer. American Journal of Psychology, 96, 223–228.

Kimura, D. (1993). Neuromotor mechanisms in human communication. oxford university Press.

Lage, G. M., Gallo, L. G., Miranda, M. G., Vieira, D. R., Schickler, D. J., Coelho, R. R., & Benda, R. (2008). Assimetrias manuais e complexidade da tarefa em habilidades de apontamento. Revista Portuguesa de Ciências do Desporto, 8(1), 47–57.

Lelis-Torres, N., Ugrinowitsch, H., Albuquerque, M. R., Apolinário-Souza, T., & Lage, G. M. (2017). The level of mental workload related to the index of difficulty of the motor task and handedness. Brazilian Journal of Motor Behavior Research, 11, 1–10.

Levy, L. A. (1976). Review of evidence for genetic component in the determination of handedness. Behavioral Genetics, 6(4), 429–453.

Marteniuk, R. G. (1976). Cognitive information processes in motor short-term memory and movement production. In Motor control (pp. 175-186). Academic Press.

Marteniuk, R. G., Mackenzie, C. L., Jeannerod, M., Athenes, S., & Dugas, C. (1987). Constraints on human arm movement trajectories. Canadian Journal of Psychology/Revue canadienne de psychologie, 41(3), 365.

McGonigle, B. O., & Flook, J. (1978). The learning of hand preferences by squirrel monkey. Psychological Research, 40, 93–98.

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97–113.

Paszulewicz, J., Wolski, P., & Gajdek, M. (2020). Is laterality adaptive? Pitfalls in disentangling the laterality-performance relationship. Cortex, 125, 175–189.

Provins, K. A., Milner, A. D., & Kerr, P. (1982). Asymmetry of manual preference and performance. Perceptual and Motor Skills, 54, 179–194.

Regaiolli, B., Spiezio, C., & Vallortigara, G. (2016). Manual lateralization in macaques: Handedness, target laterality, and task complexity. Laterality, 21(2), 100–117.

Rodrigues, P. C., & Vasconcelos, O. (2010). Desenvolvimento da assimetria manual. Revista Portuguesa de Ciências do Desporto, 10(1), Porto.

Rosenbaum, D. A. (1980). Human movement initiation: specification of arm, direction, and extent. Journal of Experimental Psychology: General, 109(4), 444.

Roy, E. A. (1983). Manual performance asymmetries and motor control processes: Subject-generated changes in response parameters. Human Movement Science, 2(4), 271-277.

Roy, E. A., & Elliott, D. (1986). Manual asymmetries in visually directed aiming. Canadian Journal of Psychology/Revue canadienne de psychologie, 40(2), 109.

Roy, L. E., & Kalbfleisch, D. (1994). Kinematic analyses of manual asymmetries in visual aiming movements. Brain and Cognition, 24(3), 289–295.

Sainburg, R. L. (2014). Convergent models of handedness and brain lateralization. Frontiers in psychology, 5, 1092.

Sainburg, R. L. (2016). Laterality of basic motor control mechanisms: Different roles of the right and left brain hemispheres. In Laterality in sports (pp. 155-177). Academic Press.

Salvador, M., Ugrinowitch, H., Silva, M. A. R., Miranda, D. M., Souza, T. A., & Lage, G. (2017). Estimulação transcraniana por corrente contínua (ETCC) e assimetrias manuais: O efeito da estimulação na destreza manual. Journal of Physical Education, 28, e2837.

Santos, I., Lage, G., Cavalcante, A., Ugrinowitch, H., & Benda, R. (2006). Análise da assimetria nos padrões fundamentais arremessar e chutar em crianças. Revista Portuguesa de Ciências do Desporto, 6(2), 188–193.

Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary (3rd ed.). Oxford University Press.

Teixeira, L. A. (2000). Assimetrias laterais em ações motoras: Preferência versus desempenho. Motriz, 6(1), 1–8.

Teixeira, L. A. (2006). Controle motor. São Paulo: Manole.

Tiffin, J. (1968). Purdue Pegboard examiner’s manual. London House.

Todor, J. I., & Doane, T. (1978). Handedness and hemispheric asymmetry in the control of movements. Journal of Motor Behavior, 10(4), 295-300.

Todor, J. I., Kyprie, P. M., & Price, H. L. (1982). Lateral asymmetries in arm, wrist and finger movements. Cortex, 18, 515–523.

Vaquero-Cristóbal, R., Martínez González-Moro, I., Alacid, F., & Ros, E. (2015). Efectos de la lateralidad sobre la flexibilidad, la fuerza-resistencia y el equilibrio en mujeres mayores activas. Retos, 27, 127–130.

Vasconcelos, M. O. F. (1993). Assessment of manual asymmetry: Are proficiency and preference measure indicators of a common underlying factor? In S. Serpa, J. Alves, V. Ferreira, & A. Paula Brito (Eds.), Proceedings of the 8th World Congress of Sport Psychology (pp. 504–507). Lisboa: Edições FMH.

Vasconcelos, O. (1993). Asymmetries of manual motor response in relation to age, sex, handedness, and occupational activities. Perceptual and Motor Skills, 77(2), 691–700.

Vasconcelos, O., & Rodrigues, P. (2008). Métodos de avaliação dos comportamentos de assimetria lateral: Medidas de preferência e medidas de performance. In D. Catela & J. Barreiros (Eds.), Desenvolvimento motor da criança (pp. 105–114). Lisboa: Edições FMH.

Downloads

Published

2024-12-01

How to Cite

Apolinário-Souza, T., Antônio Cavalcanti Garcia , M. ., Menezes Lage, G., Bicalho, L. E. A. B., Marinho Gardênia de Holanda Nogueira, N., Batalha Gomes Costa, . F., & Aparecida Fernandes, L. (2024). Use of a hand-worn accelerometer to measure hand differences in Grooved Pegboard Test. Retos, 61, 785–791. https://doi.org/10.47197/retos.v61.108415

Issue

Section

Original Research Article