Los Efectos de 6 Semanas de Entrenamiento Combinado de Bajo Volumen Sobre la Potencia Muscular, la Fuerza Muscular y la Potencia Aeróbica en Adultos Jóvenes Activos (Effects of 6 Weeks of Low-Volume Combined Training on Muscle Power, Muscular Strength, and Aerobic Power in Active Young Adults)




Palabras clave:

Ejercicio, Entrenamiento concurrente, Aptitud física, Rendimiento, Aptitud cardiorrespiratoria, No entrenado


Los efectos del entrenamiento combinado (EC) en el rendimiento deportivo están bien establecidos, así como el potencial del ejercicio de bajo volumen en la aptitud física. Sin embargo, la eficacia de la EC de bajo volumen en las medidas de aptitud física requiere más investigación. Por lo tanto, el objetivo de este estudio fue analizar los efectos de la EC de bajo volumen realizado durante 6 semanas sobre la potencia muscular, la fuerza muscular y la potencia aeróbica máxima (Wmax). Dieciocho hombres adultos jóvenes sanos y activos (promedio ± DE, 20,06 ± 1,66 años; 22,23 ± 2,76 kg/m2) realizaron una EC de bajo volumen (GE, n=9) o mantuvieron una vida normal (GC, n=9). El EC fue compuesto por un entrenamiento de fuerza (EF), 2 series de 3 ejercicios con 80 a 85% 1RM) seguido de un entrenamiento de intervalos de alta intensidad (HIIT), 5 series de 60'' con 95% Wmáximo). Las medidas de la altura de salto, 1 repetición máxima (1RM) en press de banca y sentadilla trasera, Wmax y carga inter-na se obtuvieron antes y después del entrenamiento para el análisis. Además, se utilizó una prueba ANOVA de medidas repetidas y muestras pareadas con un p ≤ 0,05. Los principales resultados demostraron que lo EC de bajo volumen aumentó la altura de salto (p ≤ 0,05), 1RM en press de banca y sentadilla trasera (p < 0,001 y p < 0,001, respectivamente) y Wmax (p ≤ 0,01), a pesar de que la carga interna no tuvo diferencias significativas entre semanas (p > 0,05). Para los adultos jóvenes activos, la TC de bajo volumen es efectiva y una estrategia tiempo eficiente para mejorar, la altura del salto, lo 1RM en press de banca y sentadilla, y la Wmax, sin aumentar la carga interna.

Palabras clave: Ejercicio, Entrenamiento concurrente, Aptitud física, Rendimiento, Aptitud cardiorrespiratoria, No entrenado.

Abstract. The effects of combined training (CE) on athletic performance are well established, as is the potential of low-volume exercise on physical fitness. However, the efficacy of low-volume CT on measures of physical fitness requires further investigation. Therefore, the aim of this study was to analyze the effects of 6-week low-volume CT on muscle power, muscle strength, and maximal aerobic power (Wmax). Eighteen healthy and active young adult men (mean ± SD, 20.06 ± 1.66 years; 22.23 ± 2.76 kg/m2) underwent low-volume CE (GE, n=9) or maintained a normal life (GC, n=9). The EC was composed of strength training (EF), 2 series of 3 exercises with 80 to 85% 1RM) followed by high intensity interval training (HIIT), 5 series of 60'' with 95% Wmax). Measurements of jump height, 1 repetition maximum (1RM) in bench press and back squat, Wmax, and internal load were obtained before and after training for analysis. In addition, an ANOVA test of repeated measures and paired samples with p ≤ 0.05 was used. The main results demonstrated that the low volume CT increased jump height (p ≤ 0.05), bench press and back squat 1RM (p < 0.001 and p < 0.001, respectively) and Wmax (p ≤ 0.01). , despite the fact that the internal load did not have significant differences between weeks (p > 0.05). For active young adults, low-volume CT is an effective and time-efficient strategy to improve jump height, bench press and squat 1RM, and Wmax without increasing internal load.

Keywords: Exercise, Concurrent training, Physical fitness, Performance, Cardiorespiratory fitness, Untrained.


American College of Sports Medicine. (2009). Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 41(3), 687–708. https://doi.org/10.1249/MSS.0B013E3181915670

Ashton, L. M., Hutchesson, M. J., Rollo, M. E., Morgan, P. J., & Collins, C. E. (2017). Motivators and Barriers to Engag-ing in Healthy Eating and Physical Activity. American Journal of Men’s Health, 11(2), 330–343. https://doi.org/10.1177/1557988316680936

Baechle, T., & Earle, R. (2011). Learning how to manipulate training variables to maximize results. In Weight Training: Steps to Success (4th ed., pp. 177–188). Human Kinetics, Inc.

Balabinis, C. P., Psarakis, C. H., Moukas, M., Vassiliou, M. P., & Behrakis, P. K. (2003). Early phase changes by concur-rent endurance and strength training. Journal of Strength and Conditioning Research, 17(2), 393–401. https://doi.org/10.1519/1533-4287(2003)017<0393:epcbce>2.0.co;2

Bell, G. J., Syrotuik, D., Martin, T. P., Burnham, R., & Quinney, H. A. (2000). Effect of concurrent strength and endur-ance training on skeletal muscle properties and hormone concentrations in humans. European Journal of Applied Physiology 2000 81:5, 81(5), 418–427. https://doi.org/10.1007/S004210050063

Beltrame, T., Gois, M. O., Hoffmann, U., Koschate, J., Richard, X., Hughson, L., Cecília, M., Frade, M., Linares, S. N., Da, R., Torres, S., & Catai, A. M. (2020). Relationship between maximal aerobic power with aerobic fitness as a func-tion of signal-to-noise ratio. Journal of Applied Physiology, 129(3), 522–532. https://doi.org/10.1152/JAPPLPHYSIOL.00310.2020

Beltz, N. M., Gibson, A. L., Janot, J. M., Kravitz, L., Mermier, C. M., & Dalleck, L. C. (2016). Graded Exercise Testing Protocols for the Determination of VO2max: Historical Perspectives, Progress, and Future Considerations. Journal of Sports Medicine, 2016, 1–12. https://doi.org/10.1155/2016/3968393

Chtara, M., Chamari, K., Chaouachi, M., Chaouachi, A., Koubaa, D., Feki, Y., Millet, G. P., & Amri, M. (2005). Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. British Journal of Sports Medicine, 39(8), 555–560. https://doi.org/10.1136/BJSM.2004.015248

Chtara, M., Chaouachi, A., Levin, G. T., Chaouachi, M., Chamari, K., Amri, M., & Laursen, P. B. (2008). Effect of con-current endurance and circuit resistance training sequence on muscular strength and power development. Journal of Strength and Conditioning Research, 22(4), 1037–1045. https://doi.org/10.1519/JSC.0B013E31816A4419

Day, M. L., McGuigan, M. R., Brice, G., & Foster, C. (2004). Monitoring exercise intensity during resistance training using the session RPE scale. Journal of Strength and Conditioning Research, 18(2), 353–358. https://doi.org/10.1519/R-13113.1

del Vecchio, A., Negro, F., Holobar, A., Casolo, A., Folland, J. P., Felici, F., & Farina, D. (2019). You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force de-velopment in humans. The Journal of Physiology, 597(9), 2445–2456. https://doi.org/10.1113/JP277396

Doma, K., Deakin, G. B., Schumann, M., & Bentley, D. J. (2019). Training Considerations for Optimising Endurance Development: An Alternate Concurrent Training Perspective. Sports Medicine (Auckland, N.Z.), 49(5), 669–682. https://doi.org/10.1007/S40279-019-01072-2

Eddens, L., van Someren, K., & Howatson, G. (2018). The Role of Intra-Session Exercise Sequence in the Interference Effect: A Systematic Review with Meta-Analysis. Sports Medicine, 48(1), 177–188. https://doi.org/10.1007/S40279-017-0784-1

Fyfe, J. J., Bartlett, J. D., Hanson, E. D., Stepto, N. K., & Bishop, D. J. (2016). Endurance training intensity does not me-diate interference to maximal lower-body strength gain during short-term concurrent training. Frontiers in Physiology, 7(NOV), 487. https://doi.org/10.3389/FPHYS.2016.00487/FULL

Fyfe, J. J., Bishop, D. J., & Stepto, N. K. (2014). Interference between concurrent resistance and endurance exercise: Mo-lecular bases and the role of individual training variables. Sports Medicine, 44(6), 743–762. https://doi.org/10.1007/S40279-014-0162-1/FIGURES/2

Fyfe, J. J., Hamilton, D. L., & Daly, R. M. (2021). Minimal-Dose Resistance Training for Improving Muscle Mass, Strength, and Function: A Narrative Review of Current Evidence and Practical Considerations. Sports Medicine, 52(3), 1–17. https://doi.org/10.1007/S40279-021-01605-8/FIGURES/3

Galvim, A. L., Oliveira, I. M., Martins, T. V., Vieira, L. M., Cerri, N. C., de Castro Cezar, N. O., Pedroso, R. V., & de Oliveira Gomes, G. A. (2019). Adherence, Adhesion, and Dropout Reasons of a Physical Activity Program in a High Social Vulnerability Context. Journal of Physical Activity and Health, 16(2), 149–156. https://doi.org/10.1123/JPAH.2017-0606

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D. C., & Swain, D. P. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuro-motor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334–1359. https://doi.org/10.1249/MSS.0B013E318213FEFB

García-Pallars, J., & Izquierdo, M. (2011). Strategies to optimize concurrent training of strength and aerobic fitness for rowing and canoeing. Sports Medicine, 41(4), 329–343. https://doi.org/10.2165/11539690-000000000-00000/FIGURES/6

Glatthorn, J. F., Gouge, S., Nussbaumer, S., Stauffacher, S., Impellizzeri, F. M., & Maffiuletti, N. A. (2011). Validity and reliability of Optojump photoelectric cells for estimating vertical jump height. Journal of Strength and Conditioning Re-search, 25(2), 556–560. https://doi.org/10.1519/JSC.0B013E3181CCB18D

González-Badillo, J. J., & Serna, J. (2020). FUERZA, VELOCIDAD Y RENDIMIENTO FÍSICO Y DEPORTIVO (2nd ed.). ESM.

Gross, M., & Lüthy, F. (2020). Anaerobic Power Assessment in Athletes: Are Cycling and Vertical Jump Tests Interchange-able? Sports (Basel, Switzerland), 8(5). https://doi.org/10.3390/SPORTS8050060

Guillen Pereira, L., Rodriguez Torres, A. F., Capote Lavandero, G., Rendón Morales, P. A., Lagla Melendres, M. E., & Rosas Mora, M. E. (2020). Evaluación de la factibilidad de un sistema de entrenamiento combinado en el desarrollo de fuerza explosiva de los miembros inferiores de los taekwondocas (Assessment of the feasibility of a combined training system in the development of explosive strength of the lower limbs of taekwondocas). Retos, 39, 411–420. https://doi.org/10.47197/retos.v0i39.80748

Häkkinen, K., Alen, M., Kraemer, W. J., Gorostiaga, E., Izquierdo, M., Rusko, H., Mikkola, J., Häkkinen, A., Valkeinen, H., Kaarakainen, E., Romu, S., Erola, V., Ahtiainen, J., & Paavolainen, L. (2003). Neuromuscular adaptations during concurrent strength and endurance training versus strength training. European Journal of Applied Physiology, 89(1), 42–52. https://doi.org/10.1007/S00421-002-0751-9/FIGURES/7

Hickson, R. C. (1980). Interference of strength development by simultaneously training for strength and endurance. Europe-an Journal of Applied Physiology and Occupational Physiology 1980 45:2, 45(2), 255–263. https://doi.org/10.1007/BF00421333

Hill, A. v., & Lupton, H. (1923). Muscular Exercise, Lactic Acid, and the Supply and Utilization of Oxygen. An International Journal of Medicine, 16(62), 135–171. https://doi.org/10.1093/QJMED/OS-16.62.135

Hunter, G., Demment, R., & Miller, D. (1987). Development of strength and maximum oxygen uptake during simultane-ous training for strength and endurance. The Journal of Sports Medicine and Physical Fitness, 27(3), 269–275. https://europepmc.org/article/med/3431108

Jones, C., Griffiths, P., & Mellalieu, S. (2016). Training Load and Fatigue Marker Associations with Injury and Illness: A Systematic Review of Longitudinal Studies. Sports Medicine, 47(5), 943–974. https://doi.org/10.1007/S40279-016-0619-5

Kirk, E. P., Washburn, R. A., Bailey, B. W., LeCheminant, J. D., & Donnelly, J. E. (2007). Six months of supervised high-intensity low-volume resistance training improves strength independent of changes in muscle mass in young overweight men. Journal of Strength and Conditioning Research, 21(1), 151–156. https://doi.org/10.1519/00124278-200702000-00027

Kraemer, W. J., Patton, J. F., Gordon, S. E., Harman, E. A., Deschenes, M. R., Reynolds, K., Newton, R. U., Triplett, N. T., & Dziados, J. E. (1995). Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. Journal of Applied Physiology (Bethesda, Md. : 1985), 78(3), 976–989. https://doi.org/10.1152/JAPPL.1995.78.3.976

Lee, M. J. C., Ballantyne, J. K., Chagolla, J., Hopkins, W. G., Fyfe, J. J., Phillips, S. M., Bishop, D. J., & Bartlett, J. D. (2020). Order of same-day concurrent training influences some indices of power development, but not strength, lean mass, or aerobic fitness in healthy, moderately-active men after 9 weeks of training. PLoS ONE, 15(5). https://doi.org/10.1371/JOURNAL.PONE.0233134

Markov, A., Chaabene, H., Hauser, L., Behm, S., Bloch, W., Puta, C., & Granacher, U. (2022). Acute Effects of Aerobic Exercise on Muscle Strength and Power in Trained Male Individuals: A Systematic Review with Meta-analysis. In Sports Medicine (Vol. 52, Issue 6, pp. 1385–1398). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s40279-021-01615-6

Marques, D. L., Neiva, H. P., Marinho, D. A., & Marques, M. C. (2023). Manipulating the Resistance Training Volume in Middle-Aged and Older Adults: A Systematic Review with Meta-Analysis of the Effects on Muscle Strength and Size, Muscle Quality, and Functional Capacity. Sports Medicine, 53(2), 503–518. https://doi.org/10.1007/s40279-022-01769-x

Martínez-Cava, A., Hernández-Belmonte, A., Courel-Ibáñez, J., Morán-Navarro, R., González-Badillo, J. J., & Pallarés, J. G. (2020). Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS ONE, 15(6). https://doi.org/10.1371/JOURNAL.PONE.0232465

Martínez-Cava, A., Morán-Navarro, R., Sánchez-Medina, L., González-Badillo, J. J., & Pallarés, J. G. (2019). Velocity- and power-load relationships in the half, parallel and full back squat. Journal of Sports Sciences, 37(10), 1088–1096. https://doi.org/10.1080/02640414.2018.1544187

Martins, R., & Loureiro, N. (2023). The effects of low-volume combined training on health-related physical fitness out-comes in active young adults: A controlled clinical trial. Sports Medicine and Health Science. https://doi.org/10.1016/J.SMHS.2022.12.004

McCarthy, J. P., Agre, J. C., Graf, B. K., Pozniak, M. A., & Vailas, A. C. (1995). Compatibility of adaptive responses with combining strength and endurance training. Medicine & Science in Sports & Exercise, 27(3), 429–436. https://doi.org/10.1249/00005768-199503000-00021

McLaren, S. J., Macpherson, T. W., Coutts, A. J., Hurst, C., Spears, I. R., & Weston, M. (2018). The Relationships Be-tween Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis. Sports Medicine, 48(3), 641–658. https://doi.org/10.1007/S40279-017-0830-Z

Methenitis, S. (2018). A Brief Review on Concurrent Training: From Laboratory to the Field. Sports, 6(4), 127. https://doi.org/10.3390/SPORTS6040127

Murlasits, Z., Kneffel, Z., & Thalib, L. (2017). The physiological effects of concurrent strength and endurance training sequence: A systematic review and meta-analysis. Journal of Sports Sciences, 36(11), 1212–1219. https://doi.org/10.1080/02640414.2017.1364405

Nugent, F. J., Comyns, T. M., Burrows, E., & Warrington, G. D. (2017). Effects of Low-Volume, High-Intensity Training on Performance in Competitive Swimmers: A Systematic Review. Journal of Strength and Conditioning Research, 31(3), 837–847. https://doi.org/10.1519/JSC.0000000000001583

Pallarés, J. G., Sánchez-Medina, L., Pérez, C. E., de La Cruz-Sánchez, E., & Mora-Rodriguez, R. (2014). Imposing a pause between the eccentric and concentric phases increases the reliability of isoinertial strength assessments. Journal of Sports Sciences, 32(12), 1165–1175. https://doi.org/10.1080/02640414.2014.889844

Pearcey, G. E. P., Alizedah, S., Power, K. E., & Button, D. C. (2021). Chronic resistance training: is it time to rethink the time course of neural contributions to strength gain? European Journal of Applied Physiology, 121(9), 2413–2422. https://doi.org/10.1007/S00421-021-04730-4/FIGURES/2

Peterson, M. D., Pistilli, E., Haff, G. G., Hoffman, E. P., & Gordon, P. M. (2011). Progression of volume load and muscu-lar adaptation during resistance exercise. European Journal of Applied Physiology, 111(6), 1063–1071. https://doi.org/10.1007/S00421-010-1735-9

Ribeiro, B., Pereira, A., Neves, P. P., Sousa, A. C., Ferraz, R., Marques, M. C., Marinho, D. A., & Neiva, H. P. (2020). The Role of Specific Warm-up during Bench Press and Squat Exercises: A Novel Approach. International Journal of Envi-ronmental Research and Public Health, 17(18), 1–15. https://doi.org/10.3390/IJERPH17186882

Schumann, M., Feuerbacher, J. F., Sünkeler, M., Freitag, N., Rønnestad, B. R., Doma, K., & Lundberg, T. R. (2021). Compatibility of Concurrent Aerobic and Strength Training for Skeletal Muscle Size and Function: An Updated System-atic Review and Meta-Analysis. Sports Medicine, 52(3), 601–612. https://doi.org/10.1007/S40279-021-01587-7

Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training Monitoring for Resistance Exercise: Theory and Applications. Sports Med, 46(5), 687–698. https://doi.org/10.1007/s40279-015-0454-0

Shamim, B., Devlin, B. L., Timmins, R. G., Tofari, P., Lee Dow, C., Coffey, V. G., Hawley, J. A., & Camera, D. M. (2018). Adaptations to Concurrent Training in Combination with High Protein Availability: A Comparative Trial in Healthy, Recreationally Active Men. Sports Medicine (Auckland, N.z.), 48(12), 2869. https://doi.org/10.1007/S40279-018-0999-9

Silva, R. F., Cadore, E. L., Kothe, G., Guedes, M., Alberton, C. L., Pinto, S. S., Pinto, R. S., Trindade, G., & Kruel, L. F. M. (2012). Concurrent training with different aerobic exercises. International Journal of Sports Medicine, 33(8), 627–634. https://doi.org/10.1055/S-0031-1299698

Storer, T. W., Davis, J. A., & Caiozzo, V. J. (1990). Accurate prediction of VO2max in cycle ergometry. Medicine and Science in Sports and Exercise, 22(5), 704–712. https://doi.org/10.1249/00005768-199010000-00024

Sultana, R. N., Sabag, A., Keating, S. E., & Johnson, N. A. (2019). The Effect of Low-Volume High-Intensity Interval Training on Body Composition and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis. Sports Medicine, 49(11), 1687–1721. https://doi.org/10.1007/S40279-019-01167-W

Tsitkanou, S., Spengos, K., Stasinaki, A. N., Zaras, N., Bogdanis, G., Papadimas, G., & Terzis, G. (2017). Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy. Scandinavian Journal of Medicine & Science in Sports, 27(11), 1317–1327. https://doi.org/10.1111/SMS.12751

Winett, R. A., Wojcik, J. R., Fox, L. D., Herbert, W. G., Blevins, J. S., & Carpinelli, R. N. (2003). Effects of low volume resistance and cardiovascular training on strength and aerobic capacity in unfit men and women: A demonstration of a threshold model. Journal of Behavioral Medicine, 26(3), 183–195. https://doi.org/10.1023/A:1023410302898

Wong, P. L., Chaouachi, A., Chamari, K., Dellal, A., & Wisloff, U. (2010). Effect of preseason concurrent muscular strength and high-intensity interval training in professional soccer players. Journal of Strength and Conditioning Research, 24(3), 653–660. https://doi.org/10.1519/JSC.0B013E3181AA36A2




Cómo citar

Martins, R., & Loureiro , N. . (2023). Los Efectos de 6 Semanas de Entrenamiento Combinado de Bajo Volumen Sobre la Potencia Muscular, la Fuerza Muscular y la Potencia Aeróbica en Adultos Jóvenes Activos (Effects of 6 Weeks of Low-Volume Combined Training on Muscle Power, Muscular Strength, and Aerobic Power in Active Young Adults). Retos, 50, 478–486. https://doi.org/10.47197/retos.v50.99698



Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a