Un modelo de tres compartimentos de composición corporal para validar una ecuación antropométrica para estimar la grasa en jugadores de fútbol americano (A three-compartment model of body composition for validating an anthropometric equation to estimate fatness in football players)

Autores/as

  • Jose Omar Lagunes-Carrasco Univiersidad Autónoma de Nuevo León, Facultad de Organización Deportiva. Monterrey México.
  • Luis Enrique Carranza García Univiersidad Autónoma de Nuevo León, Facultad de Organización Deportiva. Monterrey México.
  • Ricardo López-García Univiersidad Autónoma de Nuevo León, Facultad de Organización Deportiva. Monterrey México.
  • Alejandro Legaz-Arrese Universidad de Zaragoza, Departamento de Educación Física y Deporte. Zaragoza, España.
  • Ricardo Navarro-Orocio Univiersidad Autónoma de Nuevo León, Facultad de Organización Deportiva. Monterrey México.
  • Erik Ramírez-López Univiersidad Autónoma de Nuevo León, Monterrey México. Facultad de Salud Pública y Nutrición.

DOI:

https://doi.org/10.47197/retos.v46.93737

Palabras clave:

Modelo multicomponente, método de campo, antropometría, ecuaciones de pliegues cutáneos, deporte

Resumen

El objetivo de este estudio fue desarrollar una nueva ecuación de regresión antropométrica para predecir el porcentaje de grasa corporal (PGC) en jugadores de fútbol americano utilizando como referencia un modelo de 3 compartimientos (M3C) de composición corporal. Participaron 90 jugadores de fútbol americano (edad 22.4 ± 1.7 años; altura 178.9 ± 6.4 cm; peso 91.9 ± 17.0 kg). Se les evaluó el contenido mineral óseo, la densidad corporal, el grosor de los pliegues cutáneos y el perímetro de la cintura y cadera. Se utilizó la ecuación de Lohman para calcular el porcentaje de grasa corporal a partir del M3C. Se utilizó el análisis stepwise y de regresión para seleccionar y desarrollar los modelos finales. La mejor ecuación fue PGC = 0.265 + (0.328 × SPAPS); SPAPS: suma de los pliegues cutáneos abdominal, pantorrilla y supraespinal (R2 = 0.83; raíz cuadrada de la medida estándar de error = 2.80; p = .000). La nueva ecuación no presentó errores sistemáticos ni proporcionales (intercepción: -3.85 a -0.46; pendiente: 1.01 a 1.22). El sesgo fue de 0.01 y los límites de concordancia fueron de ± 5.5 de PGC entre la nueva ecuación y el M3C. Desarrollamos una ecuación antropométrica nueva y específica para estimar el PGC en jugadores de fútbol americano utilizando sólo 3 pliegues cutáneos, basado en un mejor M3C como referencia.

Abstract. The aim of this study was to develop a new anthropometric regression equation to predict the body fat percentage (BFP) in american football players using as a reference a 3-compartment model (3CM) of body composition. Ninety football players participated (age 22.4 ± 1.7 years; height 178.9 ± 6.4 cm; weight 91.9 ± 17.0 kg). The players were evaluated on bone mineral content, body density, skinfold thickness, and waist and hip perimeters. The Lohman equation was used to calculate body fat percentage from the 3CM. Stepwise and regression analysis was used to select and develop the final models. The best equation was: BFP = 0.265 + (0.328 × SFSUM); SFSUM: sum of the abdominal, calf, and supraspinale skinfolds (R2 = 0.83; square root of measure standard of error = 2.80; p = .000). The new equation did not present systematic or proportional error (intercept: -3.85 to -0.46; slope: 1.01 to 1.22). Bias was 0.01 and the limits of agreement were ± 5.5 of BFP between the new equation and the 3CM. We developed a new and specific anthropometric equation to estimate BFP in american football players using only 3 skinfolds and based on a better 3CM as a reference.

Citas

Alemán-Mateo, H., Romero, J. E., Morales, N. M., Salazar, G., Triana, M. H., & Valencia, M. E. (2004). Body composition by three-compartment model and relative validity of some methods to assess percentage body fat in Mexican healthy elderly subjects. Gerontology, 50(6), 366–372. https://doi.org/10.1159/000080174

Almagro Blázquez, M., Ferrer-López, V., & Martínez González-Moro, I. (2020). Relación entre factores antropométricos y de composición corporal con el rendimiento físico en piragüistas veteranos (Relationship between anthropometric factors and body composition with physical performance in veteran kayakers). Retos, 38, 53–57. https://doi.org/10.47197/retos.v38i38.72661

Atakan, M. M., Unver, E., Demirci, N., Bulut, S., & Turnagol, H. H. (2017). Effect of body composition on fitness performance in young male football players. Turkish Journal of Sport and Exercise, 19(1), 54-59.

Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8(2), 135–160. https://doi.org/10.1177/096228029900800204

Castañón-Rojas, F. L. (2019). Importancia y beneficios de la intervención fisioterapéutica en jugadores de futbol americano [Importance and benefits of physiotherapeutic intervention in American football players]. Revista Médica del Instituto Mexicano del Seguro Social, 57(4), 241–246.

Chiarlitti, N. A., Delisle-Houde, P., Reid, R., Kennedy, C., & Andersen, R. E. (2018). Importance of body composition in the national hockey league combine physiological assessments. Journal of Strength and Conditioning Research, 32(11), 3135–3142. https://doi.org/10.1519/JSC.0000000000002309

Dioum, A., Gartner, A., Maire, B., Delpeuch, F., & Wade, S. (2005). Body composition predicted from skinfolds in African women: a cross-validation study using air-displacement plethysmography and a black-specific equation. The British Journal of Nutrition, 93(6), 973–979. https://doi.org/10.1079/bjn20051426

Durnin, J. V., & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. The British Journal of Nutrition, 32(1), 77–97. https://doi.org/10.1079/bjn19740060

Ellis, K. J. (2000). Human body composition: in vivo methods. Physiological Reviews, 80(2), 649–680. https://doi.org/10.1152/physrev.2000.80.2.649

Esparza Ros, F., Vaquero Cristóbal, R., & Marfell Jones, M. (2019). International Standards for Anthropometric Assessment-International Society for the Advancement of Kinanthropometry (ISAK). Universidad Católica de Murcia (UCAM).

Figueiredo, D. H., Dourado, A. C., Stanganelli, L. C. R., & Gonçalves, H. R. (2021). Evaluación de la composición corporal y su relación com la aptitud física em futebolistas professionales al inicio de la pré-temporada (Evaluation of body composition and its relationship with physical fitness in professional soccer players at the beginni. Retos, 40, 117–125. https://doi.org/10.47197/retos.v1i40.82863

Friedl, K. E., DeLuca, J. P., Marchitelli, L. J., & Vogel, J. A. (1992). Reliability of body-fat estimations from a four-compartment model by using density, body water, and bone mineral measurements. The American Journal of Clinical Nutrition, 55(4), 764–770. https://doi.org/10.1093/ajcn/55.4.764

Fuller, N. J., Jebb, S. A., Laskey, M. A., Coward, W. A., & Elia, M. (1992). Four-component model for the assessment of body composition in humans: comparison with alternative methods, and evaluation of the density and hydration of fat-free mass. Clinical Science (London, England: 1979), 82(6), 687–693.

https://doi.org/10.1042/cs0820687

Heymsfield, S. B., Lichtman, S., Baumgartner, R. N., Wang, J., Kamen, Y., Aliprantis, A., & Pierson, R. N., Jr (1990). Body composition of humans: comparison of two improved four-compartment models that differ in expense, technical complexity, and radiation exposure. The American Journal of Clinical Nutrition, 52(1), 52–58. https://doi.org/10.1093/ajcn/52.1.52

Jackson, A. S., & Pollock, M. L. (1985). Practical assessment of body composition. The Physician and Sportsmedicine, 13(5), 76–90. https://doi.org/10.1080/00913847.1985.11708790

Jackson, A. S., Ellis, K. J., McFarlin, B. K., Sailors, M. H., & Bray, M. S. (2009). Cross-validation of generalised body composition equations with diverse young men and women: the Training Intervention and Genetics of Exercise Response (TIGER) Study. The British Journal of Nutrition, 101(6), 871–878. https://doi.org/10.1017/S0007114508047764

Kuriyan, R., Thomas, T., Ashok, S., Jayakumar, J., & Kurpad, A. V. (2014). A 4-compartment model based validation of air displacement plethysmography, dual energy X-ray absorptiometry, skinfold technique & bio-electrical impedance for measuring body fat in Indian adults. The Indian Journal of Medical Research, 139(5), 700–707.

Lee, D. H., Keum, N., Hu, F. B., Orav, E. J., Rimm, E. B., Sun, Q., Willett, W. C., & Giovannucci, E. L. (2017). Development and validation of anthropometric prediction equations for lean body mass, fat mass and percent fat in adults using the National Health and Nutrition Examination Survey (NHANES) 1999-2006. The British Journal of Nutrition, 118(10), 858–866. https://doi.org/10.1017/S0007114517002665

Liang, X., Chen, X., Li, J., Yan, M., & Yang, Y. (2018). Study on body composition and its correlation with obesity: A Cohort Study in 5121 Chinese Han participants. Medicine, 97(21), e10722. https://doi.org/10.1097/MD.0000000000010722

Lohman, T. G. (1986). Applicability of body composition techniques and constants for children and youths. Exercise and Sport Sciences Reviews, 14, 325–357. https://doi.org/10.1249/00003677-198600140-00014

López-García, R., Lagunes-Carrasco, J. O., Carranza-García, L. E., & Navarro-Orocio, R. (2021). Tendencia al sobrepeso y obesidad en jugadores de fútbol americano universitario en México (Trending overweight and obesity in college football players in Mexico). Retos, 40, 289–295. https://doi.org/10.47197/retos.v1i40.79707

McCrory, M. A., Molé, P. A., Gomez, T. D., Dewey, K. G., & Bernauer, E. M. (1998). Body composition by air-displacement plethysmography by using predicted and measured thoracic gas volumes. Journal of Applied Physiology (Bethesda, Md.: 1985), 84(4), 1475–1479. https://doi.org/10.1152/jappl.1998.84.4.1475

Nana, A., Slater, G. J., Stewart, A. D., & Burke, L. M. (2015). Methodology review: using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. International Journal of Sport Nutrition and Exercise Metabolism, 25(2), 198–215. https://doi.org/10.1123/ijsnem.2013-0228

National Health and Nutrition Examination Survey (NHANES). (2007). Anthropometry procedures manual. Available online: http://www.cdc.gov/nchs/data/nhanes/nhanes_07_08/manual_an.pdf

Oliver, J. M., Lambert, B. S., Martin, S. E., Green, J. S., & Crouse, S. F. (2012). Predicting football players' dual-energy x-ray absorptiometry body composition using standard anthropometric measures. Journal of Athletic Training, 47(3), 257–263. https://doi.org/10.4085/1062-6050-47.3.12

Parízková, J., & Bůzková, P. (1971). Relationship between skinfold thickness measured by Harpenden caliper and densitometric analysis of total body fat in men. Human Biology, 43(1), 16–21.

Passing, H., & Bablok (1983). A new biometrical procedure for testing the equality of measurements from two different analytical methods. Application of linear regression procedures for method comparison studies in clinical chemistry, Part I. Journal of Clinical Chemistry and Clinical Biochemistry. Zeitschrift fur Klinische Chemie und Klinische Biochemie, 21(11), 709–720. https://doi.org/10.1515/cclm.1983.21.11.709

Potteiger, J. A., & McGowan-Stinski, M. (2015). Protecting the metabolic health of football players with high fat mass. Strength & Conditioning Journal, 37(6), 95-101. https://doi.org/10.1519/SSC.0000000000000158

Rincón-Campos, Y. E., Sanchez-Lopez, J., López-Walle, J. M., & Ortiz-Jiménez, X. (2019). Dynamics of executive functions, basic psychological needs, impulsivity, and depressive symptoms in american football players. Frontiers in Psychology, 10, 2409. https://doi.org/10.3389/fpsyg.2019.02409

Wang, Z., Deurenberg, P., Wang, W., Pietrobelli, A., Baumgartner, R. N., & Heymsfield, S. B. (1999). Hydration of fat-free body mass: review and critique of a classic body-composition constant. The American Journal of Clinical Nutrition, 69(5), 833–841. https://doi.org/10.1093/ajcn/69.5.833

Wickkiser, J. D., & Kelly, J. M. (1975). The body composition of a college football team. Medicine and Science in Sports, 7(3), 199–202. https://doi.org/10.1249/00005768-197500730-00017

Withers, R. T., Laforgia, J., & Heymsfield, S. B. (1999). Critical appraisal of the estimation of body composition via two-, three-, and four-compartment models. American Journal of Human Biology: The Official Journal of the Human Biology Council, 11(2), 175–185. https://doi.org/10.1002/(SICI)1520-6300(1999)11:2<175::AID-AJHB5>3.0.CO;2-C

Withers, R. T., LaForgia, J., Pillans, R. K., Shipp, N. J., Chatterton, B. E., Schultz, C. G., & Leaney, F. (1998). Comparisons of two-, three-, and four-compartment models of body composition analysis in men and women. Journal of Applied Physiology (Bethesda, Md.: 1985), 85(1), 238–245. https://doi.org/10.1152/jappl.1998.85.1.238

Zillikens, M. C., & Conway, J. M. (1990). Anthropometry in blacks: applicability of generalized skinfold equations and differences in fat patterning between blacks and whites. The American Journal of Clinical Nutrition, 52(1), 45–51. https://doi.org/10.1093/ajcn/52.1.45

Descargas

Publicado

2022-09-28

Cómo citar

Lagunes-Carrasco, J. O., García, L. E. C., López-García, R., Legaz-Arrese, A., Navarro-Orocio, R., & Ramírez-López, E. (2022). Un modelo de tres compartimentos de composición corporal para validar una ecuación antropométrica para estimar la grasa en jugadores de fútbol americano (A three-compartment model of body composition for validating an anthropometric equation to estimate fatness in football players). Retos, 46, 404–410. https://doi.org/10.47197/retos.v46.93737

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas