Extrapolación retrógrada del VO2max a partir de valores de recuperación recogidos respiración a respiración (Retrograde extrapolation of VO2max from recovery values recorded breath by breath)
DOI:
https://doi.org/10.47197/retos.v41i0.84525Palabras clave:
VO2max, Extrapolación, Retrógrada, Respiración a respiración, Recuperación, (VO2max, Extrapolation, Retrograde, Breath by breath, Recovery)Resumen
El objetivo de este estudio fue evaluar la validez de la predicción del VO2máx mediante la extrapolación retrógrada en un sistema de medición de gases respiración a respiración (BxB). Se realizó un estudio retrospectivo, analizando 31 pruebas de esfuerzo incrementales y máximas realizadas en nuestro laboratorio, correspondientes a sujetos masculinos que practicaban diferentes actividades deportivas (edad: 29,9 ± 14,45 años; talla: 174,4 ± 6,5 cm; peso: 71,4 ± 7,2 kg). Se utilizó una regresión lineal del primer minuto de recuperación para obtener datos de VO2max extrapolados y, posteriormente, se aplicó una ecuación de corrección que proporcionó valores de VO2max predichos. Dada la variabilidad de los datos en los sistemas de medición BxB, se puede esperar que los valores extrapolados varíen significativamente de los realmente medidos, pero las diferencias desaparecieron en los valores predichos, que eran casi idénticos a los medidos. Este método permite realizar pruebas de esfuerzo sin tener que registrar mediciones de gas hasta el final. Podría ser útil para la validación de pruebas de campo específicas, midiendo el VO2 a pie de campo después de la prueba, durante la recuperación.
Abstract. The aim of this study was to assess the validity of VO2max prediction using retrograde extrapolation in a breath-by-breath (BxB) gas measurement system. A retrospective study was performed, analysing 31 incremental and maximal stress tests carried out in our laboratory, corresponding to male subjects who practised different sporting activities (age: 29.9 ± 14.45 years; height: 174.4 ± 6.5 cm; weight: 71.4 ± 7.2 kg). A linear regression of the first minute of recovery was used to obtain extrapolated VO2max data and, subsequently, a correction equation was applied that provided predicted VO2max values. Given the variability of data in BxB measurement systems, extrapolated values can be expected to vary significantly from those actually measured, but differences disappeared in the predicted values, which were almost identical to those measured. This method enables stress tests to be performed without having to record gas measurements until the end. It could be useful for the validation of specific field tests, measuring VO2 trackside after the test, during recovery.
Citas
Altman, D.G. & Bland, J.M. (1983). Measurement in Medicine: The Analysis of Method Comparison Studies. The Statistician, 32(3), 307–317.
Bandyopadhyay, A. (2011). Validity of 20 meter multi-stage shuttle run test for estimation of maximum oxygen uptake in male university students. Indian Journal of Physiology and Pharmacology, 55, 221.
Bland, J.M. & Altman, D.G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327, 307–310.
Carré, F., Dassonville, J., Beillot, J., & Prigent, J.Y. (1994). Use of oxygen uptake recovery curve to predict peak oxygen uptake in upper body exercise. European Journal of Applied Physiology Occupational Physiology, 69, 258-61.
Chaverri, D., Iglesias, X., Schuller, T., Hoffmann, U. & Rodríguez, F.A. (2016). Estimating peak oxygen uptake based on postexercise measurements in swimming. Applied Physiology, Nutrition and Metabolism, 41, 588–596.
Chaverri, D., Schuller, T., Iglesias, X., Hoffmann, U. & Rodríguez, F.A. (2016). A New Model for Estimating Peak Oxygen Uptake Based on Postexercise Measurements in Swimming. International Journal of Sports Physiology &Performance, 11, 419 -424.
Costill, D.L., Kovaleski, J., Porter, D., Kirwan, J., Fielding, R. & King, D. (1985). Energy expenditure during front crawl swimming: predicting success in middle-distance events. International Journal of Sports Medicine, 6, 266-270.
Di Prampero, P.E., Cortili, G., Mognoni, P. & Saibene, F. (1976). Energy cost of speed skating and efficiency of work against air resistance. Journal of Applied Physiology, 40, 584-591.
Leger, L.A. & Lambert, J. (1982). A maximal multistage 20-m shuttle run test to predict VO2max. European Journal of Applied Physiology & Occupational Physiology, 49, 1-12.
Leger, L.A., Mercier, D., Gadoury, C., & Lambert, J. (1988). The multistage 20 metre shuttle run test for aerobic fitness. Journal of Sports Science, 6, 93-101.
Leger, L.A., Seliger, V. & Brassard, L. (1979). Comparisons among VO2max values for hockey players and runners. Canadian Journal of Applied Sport Sciences. 4, 18-21.
Leger, L.A., Seliger, V. & Brassard, L. (1980). Backward extrapolation of VO2max values from the O2 recovery curve. Medicine &Science in Sports &Exercise, 12, 24-27.
Nunes, R., Silva, J., Machado, A., Menezes, L., Bocalini, D., Seixas I. et al (1980). Prediction of vo2 max in healthy non-athlete men based on ventilatory threshold. Retos, 35, 136-139.
Montpetit, R.R., Leger, L.A., Lavoie, J.M., & Cazorla, G. (1981). VO2 Peak During Free Swimming Using the Backward Extrapolation of the O2 Recovery Curve. European Journal of Applied Physiology, 47, 385-391.
Paliczka, V.J., Nichols, A.K. & Boreham, C.A. (1987). A multi-stage shuttle run as a predictor of running performance and maximal oxygen uptake in adults. British Journal of Sports Medicine, 21, 163-165.
Ramsbottom, R., Brewer, J. & Williams, C. (1988). A progressive shuttle run test to estimate maximal oxygen uptake. British Journal of Sports Medicine, 22, 141-144.
Rodríguez, F.A., Chaverri, D., Iglesias, X., Schuller, T. & Hoffmann, U. (2017). Validity of Postexercise Measurements to Estimate Peak VO2 in 200-m and 400-m Maximal Swims. International Journal of Sports Medicine, 38, 426–438.
Sleivert, G. & Mackinnon, L.T. (1991). The validation of backward extrapolation of submaximal oxygen consumption from the oxygen recovery curve. European Journal of Applied Physiology & Occupational Physiology, 63, 135-139.
Sproule, J., Kunalan, C., McNeill, M., & Wright, H. (1993). Validity of 20-MST for predicting VO2max of adult Singaporean athletes. British Journal of Sports Medicine, 27, 202-4.
Stickland, M.K., Petersen, S.R. & Bouffard, M. (2003). Prediction of maximal aerobic power from the 20-m multi-stage shuttle run test. Canadian Journal of Applied Sport Sciences, 28, 272-282.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Jose Naranjo Orellana, Sergio Muela Galán
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess