Nuevas perspectivas metodológicas en validación de acelerómetros para estimar la Actividad Física de adultos en actividades cuotidianas (New methodological approach in accelerometer validation to estimate Physical Activity of adults in daily activities)

Autores/as

  • Joao Alves de Moraes Filho Universidad de Valencia
  • Israel Villarrasa-Sapiña Universidad de Valencia https://orcid.org/0000-0002-2831-1033
  • Adrià Marco-Ahulló Universidad de Valencia
  • Xavier García-Massó
  • Luis-Millán González

DOI:

https://doi.org/10.47197/retos.v1i40.74360

Palabras clave:

acelerómetro, validación, Actigraph, adultos mayores, METs (accelerometer, validation, older adults, METs)

Resumen

 

Actualmente el acelerómetro es la herramienta más práctica y fiable para cuantificar la actividad física. El problema es que los modelos de estimación obtenidos hasta el momento no han tenido en cuenta la inclusión de los minutos de transición entre actividades, el desfase entre las aceleraciones y METs, y las variables del dominio temporal, frecuencial y de la estructura temporal de la señal. El objetivo de este estudio descriptivo transversal fue comprobar estos factores para la obtención de un modelo de estimación. Para ello, se reclutaron 30 sujetos con 55,5 (9,42) años, 73,03 (11,84) kg y 1,70 (0,08) m. Estos realizaron una serie actividades cuotidianas equipados con un acelerómetro Actigraph GT3X y un analizador de gases. Mediante el análisis de estos factores se obtuvo un modelo lineal múltiple más fiable que los modelos lineales obtenidos previamente para el acelerómetro Actigraph GT3X. Estos resultados mostraron la necesidad de incluir en los modelos lineales múltiples los minutos de transición entre actividades y las variables temporales, frecuenciales y aquellas que informan sobre la estructura temporal de la señal. En cambio, el desfase entre las aceleraciones y los METs disminuyó la exactitud de los modelos.

Abstract. Currently the accelerometer is the most practical and reliable tool for quantifying physical activity. The problem is that the estimation models obtained so far have not taken into account the inclusion of the transition minutes between the activities, the gap between the accelerations and the METs, and the variables of the time domain, the frequency domain and the temporal structure of the signal. The objective of this descriptive cross-sectional study was to test these factors for obtaining an estimation model. To this end, 30 subjects with 55,5 (9,42) years, 73,03 (11,84) kg and 1,70 (0,08) m were recruited. These performed a series of daily activities equipped with an Actigraph GT3X accelerometer and a gas analyser. By analysing these factors, a more reliable multiple linear model than the linear models previously obtained for the Actigraph GT3X accelerometer was obtained. These results showed the need to include the minutes of transition between activities and the variables of temporal domain, frequency domain and those that inform the temporal structure of the signal, in the multiple linear models. Instead, the mismatch between accelerations and METs decreased the accuracy of the models.

Citas

Ainslie, Philip, Thomas Reilly, and Klass Westerterp. 2003. “Estimating Human Energy Expenditure: A Review of Techniques with Particular Reference to Doubly Labelled Water.” Sports Medicine (Auckland, N.Z.) 33(9):683–98.

Ainsworth, Barbara E., William L. Haskell, Stephen D. Herrmann, Nathanael Meckes, David R. Jr Bassett, Catrine Tudor-Locke, Jennifer L. Greer, Jesse Vezina, Melicia C. Whitt-Glover, and Arthur S. Leon. 2011. “2011 Compendium of Physical Activities: A Second Update of Codes and MET Values.” Medicine & Science in Sports & Exercise 43(8):1575–1581. doi: 10.1249/MSS.0b013e31821ece12.

Bouchard, Claude, and Roy J. Shephard. 1994. Physical Activity, Fitness, and Health: International Proceedings and Consensus Statement. Human Kinetics Publishers.

Brooks, Anthony G., Simon M. Gunn, Robert T. Withers, Christopher J. Gore, and John L. Plummer. 2005. “Predicting Walking METs and Energy Expenditure from Speed or Accelerometry.” Medicine and Science in Sports and Exercise 37(7):1216–23.

Caspersen, C. J., K. E. Powell, and G. M. Christenson. 1985. “Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research.” Public Health Reports (Washington, D.C.: 1974) 100(2):126–31.

Chen, Kong Y., and David R. Bassett. 2005. “The Technology of Accelerometry-Based Activity Monitors: Current and Future.” Medicine and Science in Sports and Exercise 37(11 Suppl):S490-500. doi: 10.1249/01.mss.0000185571.49104.82.

Crouter, Scott E., Jr Churilla, and Jr Bassett. 2006. “Estimating Energy Expenditure Using Accelerometers.” European Journal of Applied Physiology 98(6):601–12. doi: 10.1007/s00421-006-0307-5.

Crouter, Scott E., Kurt G. Clowers, and David R. Bassett. 2006. “A Novel Method for Using Accelerometer Data to Predict Energy Expenditure.” Journal of Applied Physiology 100(4):1324–31. doi: 10.1152/japplphysiol.00818.2005.

Crouter, Scott E., Diane M. DellaValle, Magdalene Horton, Jere D. Haas, Edward A. Frongillo, and David R. Bassett. 2011. “Validity of the Actical for Estimating Free-Living Physical Activity.” European Journal of Applied Physiology 111(7):1381–89. doi: 10.1007/s00421-010-1758-2.

Crouter, Scott E., Erin Kuffel, Jere D. Haas, Edward A. Frongillo, and David R. Bassett. 2010. “A Refined 2-Regression Model for the ActiGraph Accelerometer.” Medicine and Science in Sports and Exercise 42(5):1029–37. doi: 10.1249/MSS.0b013e3181c37458.

Duffield, R., B. Dawson, H. C. Pinnington, and P. Wong. 2004. “Accuracy and Reliability of a Cosmed K4b2 Portable Gas Analysis System.” Journal of Science and Medicine in Sport 7(1):11–22. doi: 10.1016/S1440-2440(04)80039-2.

Dugas, Lara R., Lize van der Merwe, Hendrick Odendaal, Timothy D. Noakes, and Estelle V. Lambert. 2005. “A Novel Energy Expenditure Prediction Equation for Intermittent Physical Activity.” Medicine and Science in Sports and Exercise 37(12):2154–61.

Ellis, Katherine, Jacqueline Kerr, Suneeta Godbole, Gert Lanckriet, David Wing, and Simon Marshall. 2014. “A Random Forest Classifier for the Prediction of Energy Expenditure and Type of Physical Activity from Wrist and Hip Accelerometers.” Physiological Measurement 35(11):2191. doi: 10.1088/0967-3334/35/11/2191.

Freedson, P. S., E. Melanson, and J. Sirard. 1998. “Calibration of the Computer Science and Applications, Inc. Accelerometer.” Medicine and Science in Sports and Exercise 30(5):777–81.

Freedson, Patty S., Kate Lyden, Sarah Kozey-Keadle, and John Staudenmayer. 2011. “Evaluation of Artificial Neural Network Algorithms for Predicting METs and Activity Type from Accelerometer Data: Validation on an Independent Sample.” Journal of Applied Physiology 111(6):1804–12. doi: 10.1152/japplphysiol.00309.2011.

García-Massó, X., P. Serra-Añó, L. M. Gonzalez, Y. Ye-Lin, G. Prats-Boluda, and J. Garcia-Casado. 2015. “Identifying Physical Activity Type in Manual Wheelchair Users with Spinal Cord Injury by Means of Accelerometers.” Spinal Cord 53(10):772–77. doi: 10.1038/sc.2015.81.

Heil, Daniel P. 2006. “Predicting Activity Energy Expenditure Using the Actical® Activity Monitor.” Research Quarterly for Exercise and Sport 77(1):64–80. doi: 10.1080/02701367.2006.10599333.

Hurd, Wendy J., Melissa M. Morrow, and Kenton R. Kaufman. 2013. “Tri-Axial Accelerometer Analysis Techniques for Evaluating Functional Use of the Extremities.” Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology 23(4):924–29. doi: 10.1016/j.jelekin.2013.03.010.

Klippel, N. J., and D. P. Heil. 2003. “Validation of Energy Expenditure Prediction Algorithms in Adults Using the Actical Electronic Activity Monitor.” Medicine & Science in Sports & Exercise 35(5):S284.

Kohl III, Harold W., Janet E. Fulton, and Carl J. Caspersen. 2000. “Assessment of Physical Activity among Children and Adolescents: A Review and Synthesis.” Preventive Medicine 31(2):S54–76. doi: 10.1006/pmed.1999.0542.

LaPorte, R. E., H. J. Montoye, and C. J. Caspersen. 1985. “Assessment of Physical Activity in Epidemiologic Research: Problems and Prospects.” Public Health Reports (Washington, D.C.: 1974) 100(2):131–46.

Leenders, N. Y. J. M., T. E. Nelson, and W. M. Sherman. 2003. “Ability of Different Physical Activity Monitors to Detect Movement during Treadmill Walking.” International Journal of Sports Medicine 24(1):43–50. doi: 10.1055/s-2003-37196.

Li, Ming, Viktor Rozgica, Gautam Thatte, Sangwon Lee, Adar Emken, Murali Annavaram, Urbashi Mitra, Donna Spruijt-Metz, and Shrikanth Narayanan. 2010. “Multimodal Physical Activity Recognition by Fusing Temporal and Cepstral Information.” IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society 18(4):369–80. doi: 10.1109/TNSRE.2010.2053217.

Liu, S., R. X. Gao, D. John, J. Staudenmayer, and P. S. Freedson. 2011. “SVM-Based Multi-Sensor Fusion for Free-Living Physical Activity Assessment.” Pp. 3188–91 in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

Liu, S., R. X. Gao, D. John, J. W. Staudenmayer, and P. S. Freedson. 2012. “Multisensor Data Fusion for Physical Activity Assessment.” IEEE Transactions on Biomedical Engineering 59(3):687–96. doi: 10.1109/TBME.2011.2178070.

Lugade, Vipul, Emma Fortune, Melissa Morrow, and Kenton Kaufman. 2014. “Validity of Using Tri-Axial Accelerometers to Measure Human Movement—Part I: Posture and Movement Detection.” Medical Engineering & Physics 36(2):169–76. doi: 10.1016/j.medengphy.2013.06.005.

McArdle, WD., Katch, FI., and Katch, VL. 2004. Fundamentos de fisiologia del ejercicio. 2a ed. Madrid: McGraw Hill Interamericana.

Montoye, Henry J. 1996. Measuring Physical Activity and Energy Expenditure. Champaign, IL: Human Kinetics.

Ndahimana, Didace, and Eun-Kyung Kim. 2017. “Measurement Methods for Physical Activity and Energy Expenditure: A Review.” Clinical Nutrition Research 6(2):68–80. doi: 10.7762/cnr.2017.6.2.68.

Pate, R. R., M. Pratt, S. N. Blair, W. L. Haskell, C. A. Macera, C. Bouchard, D. Buchner, W. Ettinger, G. W. Heath, and A. C. King. 1995. “Physical Activity and Public Health. A Recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine.” JAMA 273(5):402–7.

Pate, Russell R., Barbara J. Long, and Greg Heath. 1994. “Descriptive Epidemiology of Physical Activity in Adolescents.” Pediatric Exercise Science 6(4):434–47. doi: 10.1123/pes.6.4.434.

Preece, Stephen J., John Yannis Goulermas, Laurence P. J. Kenney, and David Howard. 2009. “A Comparison of Feature Extraction Methods for the Classification of Dynamic Activities from Accelerometer Data.” IEEE Transactions on Bio-Medical Engineering 56(3):871–79. doi: 10.1109/TBME.2008.2006190.

Rothney, Megan P., Emily V. Schaefer, Megan M. Neumann, Leena Choi, and Kong Y. Chen. 2008. “Validity of Physical Activity Intensity Predictions by ActiGraph, Actical, and RT3 Accelerometers.” Obesity 16(8):1946–52. doi: 10.1038/oby.2008.279.

Sazonova, Nadezhda, Raymond C. Browning, and Edward Sazonov. 2011. “Accurate Prediction of Energy Expenditure Using a Shoe-Based Activity Monitor.” Medicine and Science in Sports and Exercise 43(7):1312–21. doi: 10.1249/MSS.0b013e318206f69d.

Staudenmayer, John, David Pober, Scott Crouter, David Bassett, and Patty Freedson. 2009. “An Artificial Neural Network to Estimate Physical Activity Energy Expenditure and Identify Physical Activity Type from an Accelerometer.” Journal of Applied Physiology 107(4):1300–1307.

Westerterp, Klaas R. 2009. “Assessment of Physical Activity: A Critical Appraisal.” European Journal of Applied Physiology 105(6):823–28. doi: 10.1007/s00421-009-1000-2.

Winter, David A., Arthur O. Quanbury, and Gary D. Reimer. 1976. “Analysis of Instantaneous Energy of Normal Gait.” Journal of Biomechanics 9(4):253–57. doi: 10.1016/0021-9290(76)90011-7.

Yngve, Agneta, Andreas Nilsson, Michael Sjöström, and Ulf Ekelund. 2003. “Effect of Monitor Placement and of Activity Setting on the MTI Accelerometer Output.” Medicine and Science in Sports and Exercise 35(2):320–26.

Descargas

Publicado

2021-04-01

Cómo citar

de Moraes Filho, J. A., Villarrasa-Sapiña, I., Marco-Ahulló, A., García-Massó, X., & González, L.-M. (2021). Nuevas perspectivas metodológicas en validación de acelerómetros para estimar la Actividad Física de adultos en actividades cuotidianas (New methodological approach in accelerometer validation to estimate Physical Activity of adults in daily activities). Retos, 40, 216–223. https://doi.org/10.47197/retos.v1i40.74360

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a