Análisis del patrón de carrera sobre superficie artificial y natural en futbolistas adolescentes (Analysis of the running pattern on artificial and natural surface in adolescent football players)

  • Brandon López-Gómez Universidad Santo Tomas.
  • David Andrés Pérez-Mendoza Universidad Santo Tomas-Bucaramanga
  • Julián Santiago Guzmán-Revelo Universidad Santo Tomas
  • Luis Gabriel Rangel-Caballero Universidad Santo Tomas
  • Yully Corzo-Vargas Universidad de Santander-Bucaramanga.
  • Tábata de Paula Facioli Universidad de San Pablo-Brasil
  • Adriana Angarita Fonseca Universidad de Santander-Bucaramanga University of Saskatchewan-Canadá
  • Juan Carlos Sanchez Delgado Universidad Santo Tomas, Universidad de Santander
Palabras clave: Fútbol, carrera, locomoción, aceleración, cinética (Soccer, running, locomotion, acceleration, kinetics)

Resumen

Introducción: Existe poca evidencia que detalle el comportamiento de cada variable espacio-temporal del patrón de carrera utilizando diferentes superficies. Objetivo: Comparar las variables espaciotemporales del patrón de carrera de futbolistas adolescentes en superficie natural y artificial. Método: se realizó un estudio de corte transversal con 18 jugadores de fútbol masculino (edad mediana= 12 años; Rango intercuartílico [RIC] 12-13). Mediante un sistema de medición óptico de 5 metros de longitud se analizó velocidad, aceleración, tiempo de contacto (Tc), tiempo de vuelo (Tv), fase de contacto, fase de apoyo, propulsión, zancada y cadencia. Las valoraciones fueron inicialmente desarrolladas en Superficie Artificial (SA) y 24 horas después en Superficie Natural (SN). Se utilizaron las pruebas Rangos con signos de Wilcoxon para datos pareados y el coeficiente de correlación de Spearman. Resultados: La SA mostró una fase de apoyo fue superior a la SN (SN: Me=0,05 RIC:0,03; 0,06; SA: Me=0,09 RIC 0,08;0,10; p <0,001). El Tv (SN: Me=0,16 RIC:0,14;0,19; SA: Me=0,04 RIC: 0,04;0,05; p<0,001), la fase de contacto (SN: Me=0,02 RIC:0,02;0,03; SA: Me=0,02 RIC: 0,01;0,02; p=0,040) y la propulsión (SN: Me=0,14 RIC:0,09;0,17; SA: Me=0,07 RIC:0,06;0,09; p=<0,001) fueron mayores en SN que en SA. Se encontró una relación indirecta entre velocidad y fase de contacto en SN. El Tv y la zancada se asociaron indirectamente con la aceleración en SA. Conclusión: el patrón de carrera varía según la superficie utilizada. La fase de contacto puede explicar la velocidad en la SN; mientras que el Tv y la zancada pueden explicar la aceleración en la SA.


Abstract. Introduction: There is little evidence that details the behavior of each spatial-temporal variable of the running pattern using different surfaces. Objective: To compare the spatial-temporal variables of the running pattern over two surfaces in adolescent soccer players. Method: A cross-sectional study involving 18 male soccer players was conducted (median [Me] age = 12 years; Interquartile range [IQR] 12-13). Speed, acceleration, contact time (Ct), flight time (Ft), contact phase, support phase, propulsion, stride, and cadence were evaluated through a 5-meter long optical measurement system. The assessments were initially carried out on Artificial Surface (AS) and, 24 hours later, on Natural Surface (NS). The Wilcoxon signed-rank test for paired data and the Spearman correlation coefficient were used. Results: The support phase was greater in AS than NS (NS: Me = 0.05 IQR: 0.03; 0.06; AS: Me = 0.09 IQR 0.08; 0.10; p <0.001). The Ft (NS: Me = 0.16 IQR: 0.14; 0.19; AS: Me = 0.04 IQR: 0.04; 0.05; p <0.001), the contact phase (NS: Me = 0.02 IQR: 0.02; 0.03; AS: Me = 0.02 IQR: 0.01; 0.02; p = 0.040) and propulsion (NS: Me = 0.14 IQR: 0.09; 0.17; AS: Me = 0.07 IQR: 0.06; 0.09; p = <0.001) were greater in NS than AS. An indirect relationship between speed and contact phase in NS was found. The Ft and the stride were indirectly associated with acceleration in AS. Conclusion: The running pattern varies according to the surface used. The contact phase can explain the speed in the NS; while the Ft and the stride can explain the acceleration in AS.

Biografía del autor/a

Juan Carlos Sanchez Delgado, Universidad Santo Tomas, Universidad de Santander

Profesor de fisioterapia Universidad de Santander.

Profesor de Cultura Física - Universidad Santo Tomas.

Fisioterapeuta UIS - Colombia

MSc Actividad Física y Deporte - Colombia

PhD (c) Universidad de Sao Paulo - Brasil.

Citas

DBlazevich, A. (2011). Biomecánica deportiva. Boldalona: Paidotribo.

Diez, O., & Burillo, P. (2012). Influencia de la superficie de juego en el rendimiento de futbolistas amateurs: hierba natural, césped artificial y tierra. AGON International Journal of Sport Sciences, 2(2) 106-114.

Choi, S., Raymond, K., & Elean, F. (2015). Comparison between Natural Turf and Artificial Turf on Agility Performance of Rugby Union Players. Advances in Physical Education, 5(4), 273-281.

Gaudino, P., Gaudino, C., Alberti, G., & Minetti, A. (2013). Biomechanics and predicted energetics of sprinting on sand: Hints for soccer training. Journal of Science and Medicine in Sport, 16(3); 271-275.

González-De Los Reyes, Y.; Fernández-Ortega, J. & Garavito–Peña, F. (2019) Características de fuerza y velocidad de ejecución en mujeres jóvenes futbolistas. Characteristics of Strength and Speed of Execution in Young Women Soccer Players. Revista Internacional de Medicina y Ciencias de la Actividad Física y el Deporte. 19(73); 167-179

Jastrzębski, Z., Bichowska, M., Rompa, P., Radzimiński, L., & Dargiewicz, R. (2014). Influence of different types of surfaces on the results of running speed tests in young soccer players. Central European Journal of Sport Sciences and Medicine, 5(1), 5-14.

Faude O., Koch T. & Meyer T. (2012). Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 30 625–631.

Gain, G., Swedenhjelm, A., Mayhew, J., & Houser, J. (2010). Comparison of speed and agility performance of college football players on field turf and natural grass. The Journal of Strength and Conditioning Research, 24(10), 2613-7.

Gool, V., Gerven, v., & Boutmans. (1988). The physiological load imposed on soccer players during real match-play. In: Science and Football Committee. World Congress of Science and Football, Liverpool, Editorial Routledge.

Little, T., & Williams, A. (2005). Specificity of acceleration, maximum speed and agility in professional soccer players. J Strength Cond Res, 19(1), 76-8.

Baker, D., & Nance, S. (1999). he relation between running speed and measures of strength and power in professional rugby league players. J. Strength Cond. Res, 13(3), 224-229.

Pauole, K., Madole, K., Rozenek, R., & Lacourse, M. (2000). Reliability and validity of the T-test as a measure of agility, leg power and leg speed in college aged men and women. J. Strength Cond. Res, 14; 450-443.

Rius, J. (2005). Metodología y técnicas de atletismo. Barcelona: Paidotribo.

Rumpf, M., Cronin, J., Oliver, J., & Hughes, M. (2015). Kinematics and Kinetics of Maximum Running Speed in Youth Across Maturity. Pediatric Exercice Science, 27(2) 84-277.

Seagrave, L., Mouchbahani, R., & O`donnel, K. (2009). Neuro-biomechanics of maximum velocity sprinting. New Stud Athl, 24(1); 19-29.

Mackala, K. (2007). Optimisation of performance through kinematic analysis of the different phases of the 100 meters. New Stud Athl, 22(2); 7-16.

Avalos, J. (1-19 de 05 de 2017). Efectos del césped sintético y natural sobre el rendimiento físico y técnico en jugadores profesionales de fútbol. Obtenido de UNIVERSIDAD NACIONAL DE COSTA RICA: http://repositorio.una.ac.cr/handle/11056/13654

Williams, J., Akogyrem, E., & Williams, J. (2013). A Meta-Analysis of Soccer Injuries on Artificial Turf and Natural Grass. Journal of Sports Medicine, 1-6.

Sánchez-Sánchez, García-Unanue, Felipe, Jiménez-Reyes, Viejo-Romero, & Gómez-López. (2016). Physical and physiological responses of amateur football players on third generation artificial turf systems during simulated game situations. J Strength Cond Res, 30(11); 77-3165.

Andersson, H., Ekblom, P., & Krustrup, B. (2008). Elite football on artificial turf versus natural grass: Movement patterns, technical standards, and player impressions. Journal Sports Science, 26(2); 22-113.

Nédélec, M., McCall, A., Carling, C., Gall, L., Berthoin, F & Dupont, G. (2013). Physical performance and subjective ratings after a soccer-specific exercise simulation: comparison of natural grass versus artificial turf. Journal Sports Science, 31(5); 36-529.

Rienzi, E., Drust, B., Reilly, T., Carter, J., & Martin, A. (2000). Investigation of anthropometric and work-rate profiles of elite South American international soccer players. Journal Sport Sciene Physical Fitness, 40(2); 9-162.

Andrzejewski, M., Chmura, J., Pluta, B., Strzelczyk, R., & Kasprzak, A. (2013). Analysis of sprinting activities of professional soccer players. J Strength Cond Res, 27(8); 40-2134.

Reilly, T., Bangsbo, J., & Franks, A. (2000). Anthropometric and physiological predispositions for elite soccer. Journal Sports Science, 18(9); 83-669.

Optogait, M. (8 de 2018 de 2018). Optogait. Obtenido de Optogait: http://www.optogait.com/OptoGaitPortal/Media/Manuals/Manual-ES.PDF

Oyarzo-Mauricio, C. A., Said-Negrete, M. J., & Nazar-Araya, M. J. (2017). Correlación del Single Hop Test con la prueba de Velocidad en treinta metros en infantes entre diez y doce años de un colegio privado de Santiago de Chile. RETOS. Nuevas Tendencias En Educación Física, Deporte y Recreación, 1(32), 101–105.

FIFA. (2011). Analisis del rendimiento físico durante la copa de la FIFA 2011. Zurich. Recuperado el 23 de Abril de 2016, de FIFA: https://resources.fifa.com/mm/document/footballdevelopment/technicalsupport/01/68/06/99/fwwcphysicalanalysis-ss.pdf.

Kampmiller, T., Vanderka, M., Šelinger, P., & Šelingerová, M. (2011). Kinematic paramaters of the running stride in 7- to 18-year-old youth. Kinesiol Slov, 17(2); 63-75.

Haugen, T. A., Tønnessen, E., Hisdal, J. & Seiler, S. (2014). The role and development of sprinting speed in soccer. Int. J. Sports Physiol. Perform. 9, 432–441.

Murata, M., Takai, Y., Kanehisa, H., Fukunaga, T., & Nagahara, R. (2018). Spatiotemporal and Kinetic Determinants of Sprint Acceleration Performance in Soccer Players. Sports (Basel, Switzerland), 6(4), 169.

Nagahara, R.; Mizutani, M.; Matsuo, A.; Kanehisa, H., & Fukunaga, T. (2018) Association of sprint performance with ground reaction forces during acceleration and maximal speed phases in a single sprint. J. Appl. Biomech. 34, 104–110.

Núñez J., Toscano, F., Suarez, L., Martinez I., & Hoyos, M. (2019). Umbrales individualizados para analizar las demandas en la aceleración en futbolistas usando GPS. Retos, número 35; 75-79.

Rabita, G., Dorel, S., Slawinski, J., Saez-de-Villarreal, E., Couturier, A., & Samozino, P.Morin, J.B. (2015) Sprint mechanics in world-class athletes: A new insight into the limits of human locomotion. Scand. J. Med. Sci. Sports , 25, 583–594.

Morin, J.B, Slawinski, J,Dorel, S., Saez-de-Villarreal, E., Couturier, A. Samozino, P, Brughelli, M. & Rabita, G. (2015), Acceleration capability in elite sprinters and ground impulse: Push more, brake less? J. Biomech. 48, 3149–3154.

Murphy, A.J.; Lockie, R.G. & Coutts, A.J. (2003) Kinematic determinants of early acceleration in field sport athletes. J. Sports Sci. Med. 2, 144–150.

Wild, J.J., Bezodis, I.N., North, J.S. & Bezodis, N.E. (2018) Differences in step characteristics and linear kinematics between rugby players and sprinters during initial sprint acceleration. Eur. J. Sport Sci. 18(10); 1327-1337.

Paradicis, GP., Bissas, A., Pappas, P., Zacharogiannis, E., Theodorou, A., & Girard, O. (2019). Sprint mechanical differences at maximal running speed: Effects of performance, J Sport Sci, 37(17); 2026-2036.

Pérez, P., Liana, S., Cortell, J., & Perez, J. (2009) biomechanical factors to be taken into account to prevent injuries and improve sporting performance on artificial turf. J. Hum. Sport Exerc. 4(2); 78-92

Rabita G., Dorel S., Slawinski J., Sàez-de-Villarreal E., Couturier A., & Samozino P. (2015). Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand. J. Med. Sci. Sports. 25; 583–594.

McMurtry, S., & Fiedler, G. (2019) Comparison of lower limb segment forces during running on artificial turf and natural grass. J Rehabil Assist Technol Eng. 6; 1-5.

Sánchez J., Hernández, C., Muñoz, V., González, A., Fernández, A., & Carretero, M. (Efecto de un entrenamiento intermitente con y sin cambios de dirección, sobre el rendimiento físico de jóvenes futbolistas. Retos, número 30; 70-75.

Lee, M., Song, CH., Lee, KJ., Jung, SW., Shin, DC., & Shin SH. (2014) Concurrent validity and test-retest reliability of the OPTOGait photoelectric cell system for the assessment of Spatio-temporal parameters of the gait of young adults. J Phys Ther Sci. 26(1); 81–85.

Lienhard, K., Schneider, D., & Maffiuletti, NA. Validity of the Optogait photoelectric system for the assessment of spatiotemporal gait parameters. Med Eng Phys. 35(4); 4-500.

Hunter, J. P., Marshall, R. N., & McNair, P. J. (2004). Interaction of Step Length and Step Rate during Sprint Running. Medicine and Science in Sports and Exercise, 36(2), 261–271.

Bezoidis, N., Willwacher, S., & Tapio, A. (2019) The biomechanics of the track and fiel sprint start: A narrative Review. Sport Med. 49(9); 1345-1364.

Publicado
2019-12-14
Cómo citar
López-Gómez, B., Pérez-Mendoza, D., Guzmán-Revelo, J., Rangel-Caballero, L., Corzo-Vargas, Y., de Paula Facioli, T., Angarita Fonseca, A., & Sanchez Delgado, J. (2019). Análisis del patrón de carrera sobre superficie artificial y natural en futbolistas adolescentes (Analysis of the running pattern on artificial and natural surface in adolescent football players). Retos, 38(38), 109-113. https://doi.org/10.47197/retos.v38i38.72337
Sección
Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a