Velocidad de la marcha en adultos mayores: explorando el impacto de factores funcionales, físicos y sociales (Gait speed in older adults: exploring the impact of functional, physical and social factors)

Autores/as

  • Naiara Virto Deusto Institute of Technology, University of Deusto, Bilbao, Spain https://orcid.org/0000-0002-2850-8717
  • Xabier Río Department of Physical Activity and Sport Sciences, Faculty of Education and Sport. University of Deusto. https://orcid.org/0000-0001-9303-619X
  • Iker Muñoz-Pérez Department of Physical Activity and Sport Sciences, Faculty of Education and Sport. University of Deusto. https://orcid.org/0000-0001-5480-1581
  • Amaia Méndez-Zorrilla eVida Research Lab. Faculty of Engineering. University of Deusto https://orcid.org/0000-0002-0539-4753
  • Begoña García-Zapirain eVida Research Lab. Faculty of Engineering. University of Deusto

DOI:

https://doi.org/10.47197/retos.v61.109902

Palabras clave:

Fragilidad, velocidad de la marcha, adultos mayores, potencia relativa, estado socioeconómico

Resumen

Objetivo: Con la edad, se produce un deterioro neuromuscular y cognitivo que afecta la capacidad funcional. Uno de los signos más característicos y fácilmente reconocibles de este deterioro es la disminución de la velocidad de marcha habitual. En los adultos mayores, la velocidad de la marcha es un indicador no invasivo del estado de salud y funcional, y se considera un signo vital. Dado que predice diversas condiciones en etapas posteriores de la vida, medir la velocidad de marcha habitual es crucial en el ámbito clínico. Por lo tanto, analizar y determinar la asociación entre la velocidad de la marcha y el impacto de las variables funcionales y socioeconómicas puede facilitar la prevención de problemas de salud asociados y el mantenimiento de la función física en los adultos mayores. Este estudio tiene como objetivo identificar los factores clave que influyen en la velocidad de marcha en adultos mayores, así como examinar la influencia del estado socioeconómico sobre la velocidad de marcha. Métodos: Un total de 1,253 adultos mayores (89.5% mujeres) con una edad media de 78.1 ± 5.8 años participaron voluntariamente en este estudio transversal descriptivo, que examina los resultados de pruebas de capacidad funcional y datos socioeconómicos en adultos mayores. Para evaluar la función física, se realizaron pruebas SPPB (prueba de levantarse de la silla, pruebas de equilibrio, prueba de velocidad de la marcha), fuerza manual, índice de calidad muscular y potencia, además de medir la composición corporal y el estado socioeconómico. Resultados: El modelo de regresión final mostró que la velocidad de la marcha fue explicada significativamente de forma parcial (R2=0.35; p<0.01) por el entorno socioeconómico, la edad, el equilibrio y la potencia relativa. Al mismo tiempo, pertenecer a un entorno socioeconómico más alto se asocia con una menor potencia relativa (p<0.01; η2=0.07). Conclusiones: Este estudio destaca que la edad, la potencia relativa y el equilibrio son determinantes significativos de la velocidad de la marcha en los adultos mayores. Estos marcadores clínicos proporcionan información crucial para diseñar intervenciones personalizadas y efectivas que promuevan un envejecimiento saludable.

Palabras clave: Fragilidad, velocidad de la marcha, adulto mayor, potencia relativa, estatus socioeconómico.

Abstract. Purpose: With age there is a neuromuscular and cognitive decline that impacts on functional ability. One of the most characteristic and easily recognisable signs of this decline is a decrease in usual gait speed. For older adults, gait speed is a non-invasive indicator of health and functional status and is regarded as a vital sign. As it predicts various conditions later in life, measuring usual walking speed is crucial in the clinical setting. Therefore, analysing and determining the association between walking speed and the impact of functional and socio-economic variables may facilitate the prevention of associated health problems and the maintenance of physical function in older adults. This study aims to identify the key factors that influence walking speed in older adults, as well as to examine the influence of socio-economic status on walking speed. Methods: A total of 1253 older adults (89.5% women) with a mean age of 78.1 ± 5.8 voluntarily participated in this descriptive cross-sectional study, which examines the results of functional capacity tests and socioeconomic data in older adults. To assess physical function, SPPB tests (chair stand test, balance tests, gait speed test), manual grip strength, muscle quality index, and power were conducted, in addition to measuring body composition and socioeconomic status. Results: The final regression model showed that gait speed was significantly partially explained (R2=0.35; p<0.01) by the socioeconomic environment, age, balance, and relative power. At the same time, belonging to a higher socio-economic environment is linked to lower relative power (p<0.01; η2=0.07). Conclusions: Exploring the factors that affect walking speed in older adults, this study highlights that age, relative power and balance are significant determinants. These clinical markers provide crucial information for designing personalized and effective interventions to promote healthy aging.

Keywords: Frailty, gait speed, elderly, relative power, socioeconomic status.

Citas

Abellan Van Kan, G., Rolland, Y., Andrieu, S., Bauer, J., Beauchet, O., Bonnefoy, M., Cesari, M., Donini, L. M., Gil-lette-Guyonnet, S., Inzitari, M., Nourhashemi, F., Onder, G., Ritz, P., Salva, A., Visser, M., & Vellas, B. (2009). Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. The Journal of nutrition, health and aging, 13(10), 881-889. https://doi.org/10.1007/s12603-009-0246-z

Aboutorabi, A., Arazpour, M., Bahramizadeh, M., Hutchins, S. W., & Fadayevatan, R. (2016). The effect of aging on gait parameters in able-bodied older subjects: A literature review. Aging Clinical and Experimental Research, 28(3), 393-405. https://doi.org/10.1007/s40520-015-0420-6

Alcazar, J., Aagaard, P., Haddock, B., Kamper, R. S., Hansen, S. K., Prescott, E., Alegre, L. M., Frandsen, U., & Suet-ta, C. (2020). Age- and Sex-Specific Changes in Lower-Limb Muscle Power Throughout the Lifespan. The Journals of Gerontology: Series A, 75(7), 1369-1378. https://doi.org/10.1093/gerona/glaa013

Alcazar, J., Losa-Reyna, J., Rodriguez-Lopez, C., Alfaro-Acha, A., Rodriguez-Mañas, L., Ara, I., García-García, F. J., & Alegre, L. M. (2018). The sit-to-stand muscle power test: An easy, inexpensive and portable procedure to assess muscle power in older people. Experimental Gerontology, 112, 38-43. https://doi.org/10.1016/j.exger.2018.08.006

Alizadehsaravi, L., Bruijn, S. M., Muijres, W., Koster, R. A. J., & Dieën, J. H. van. (2022). Improvement in gait stabil-ity in older adults after ten sessions of standing balance training. PLOS ONE, 17(7), e0242115. https://doi.org/10.1371/journal.pone.0242115

Alley, D. E., Shardell, M. D., Peters, K. W., McLean, R. R., Dam, T.-T. L., Kenny, A. M., Fragala, M. S., Harris, T. B., Kiel, D. P., Guralnik, J. M., Ferrucci, L., Kritchevsky, S. B., Studenski, S. A., Vassileva, M. T., & Cawthon, P. M. (2014). Grip strength cutpoints for the identification of clinically relevant weakness. The Journals of Gerontology. Se-ries A, Biological Sciences and Medical Sciences, 69(5), 559-566. https://doi.org/10.1093/gerona/glu011

Andrews, A. W., Vallabhajosula, S., Boise, S., & Bohannon, R. W. (2023). Normal gait speed varies by age and sex but not by geographical region: A systematic review. Journal of Physiotherapy, 69(1), 47-52. https://doi.org/10.1016/j.jphys.2022.11.005

Baltasar-Fernandez, I., Alcazar, J., Losa-Reyna, J., Soto-Paniagua, H., Alegre, L. M., Takai, Y., Ruiz-Cárdenas, J. D., Signorile, J. F., Rodriguez-Mañas, L., García-García, F. J., & Ara, I. (2021). Comparison of available equations to es-timate sit-to-stand muscle power and their association with gait speed and frailty in older people: Practical applica-tions for the 5-rep sit-to-stand test. Experimental Gerontology, 156, 111619. https://doi.org/10.1016/j.exger.2021.111619

Baltasar-Fernandez, I., Alcazar, J., Mañas, A., Alegre, L. M., Alfaro-Acha, A., Rodriguez-Mañas, L., Ara, I., García-García, F. J., & Losa-Reyna, J. (2021). Relative sit-to-stand power cut-off points and their association with negatives outcomes in older adults. Scientific Reports, 11(1), 19460. https://doi.org/10.1038/s41598-021-98871-3

Barbat-Artigas, S., Rolland, Y., Zamboni, M., & Aubertin-Leheudre, M. (2012). How to assess functional status: A new muscle quality index. The Journal of nutrition, health and aging, 16(1), 67-77. https://doi.org/10.1007/s12603-012-0004-5

Bohannon, R. W., Magasi, S. R., Bubela, D. J., Wang, Y.-C., & Gershon, R. C. (2012). Grip and Knee extension mus-cle strength reflect a common construct among adults. Muscle & Nerve, 46(4), 555-558. https://doi.org/10.1002/mus.23350

Bohannon, R. W., & Williams Andrews, A. (2011). Normal walking speed: A descriptive meta-analysis. Physiotherapy, 97(3), 182-189. https://doi.org/10.1016/j.physio.2010.12.004

Buchner, D. M., Larson, E. B., Wagner, E. H., Koepsell, T. D., & de Lateur, B. J. (1996). Evidence for a non-linear relationship between leg strength and gait speed. Age and Ageing, 25(5), 386-391. https://doi.org/10.1093/ageing/25.5.386

Bullock, G. S., Hughes, T., Sergeant, J. C., Callaghan, M. J., Riley, R. D., & Collins, G. S. (2021). Clinical Prediction Models in Sports Medicine: A Guide for Clinicians and Researchers. Journal of Orthopaedic & Sports Physical Therapy, 51(10), 517-525. https://doi.org/10.2519/jospt.2021.10697

Busch, T. de A., Duarte, Y. A., Pires Nunes, D., Lebrão, M. L., Satya Naslavsky, M., dos Santos Rodrigues, A., & Amaro, E. (2015). Factors associated with lower gait speed among the elderly living in a developing country: A cross-sectional population-based study. BMC Geriatrics, 15(1), 35. https://doi.org/10.1186/s12877-015-0031-2

Caballero-Mora, M. A., Rodríguez Mañas, L., Valdés-Aragonés, M., García-Sánchez, I., Alonso-Bouzon, C., Castro Rodríguez, M., Nuñez-Jimenez, L., Esteban, A., & Rodriguez-Laso, A. (2020). Factors associated with impairment in gait speed in older people with clinically normal gait. A cross-sectional study. Aging Clinical and Experimental Research, 32(6), 1043-1048. https://doi.org/10.1007/s40520-019-01187-6

Castell, M.-V., Sánchez, M., Julián, R., Queipo, R., Martín, S., & Otero, Á. (2013). Frailty prevalence and slow walking speed in persons age 65 and older: Implications for primary care. BMC Family Practice, 14(1), 86. https://doi.org/10.1186/1471-2296-14-86

Cawthon, P. M., Patel, S. M., Kritchevsky, S. B., Newman, A. B., Santanasto, A., Kiel, D. P., Travison, T. G., Lane, N., Cummings, S. R., Orwoll, E. S., Duchowny, K. A., Kwok, T., Hirani, V., Schousboe, J., Karlsson, M. K., Mell-ström, D., Ohlsson, C., Ljunggren, Ö., Xue, Q.-L., … Manini, T. M. (2021). What Cut-Point in Gait Speed Best Discriminates Community-Dwelling Older Adults With Mobility Complaints From Those Without? A Pooled Analy-sis From the Sarcopenia Definitions and Outcomes Consortium. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 76(10), e321-e327. https://doi.org/10.1093/gerona/glab183

Ceolin, C., Acunto, V., Simonato, C., Cazzavillan, S., Vergadoro, M., Papa, M. V., Trapella, G. S., Sermasi, R., Noale, M., De Rui, M., Zanforlini, B. M., Curreri, C., Bertocco, A., Devita, M., Coin, A., & Sergi, G. (2024). New Per-spectives in the Association between Anthropometry and Mortality: The Role of Calf Circumference. The Journal of Frailty & Aging. https://doi.org/10.14283/jfa.2024.4

Chang, C.-J., Lin, C.-H., Hsieh, H.-M., Lo, W.-Y., Lai, Y.-H., Peng, L.-N., & Chen, L.-K. (2021). Risk of sarcopenia among older persons with Type 2 diabetes mellitus with different status of albuminuria: A dose-responsive associa-tion. Archives of Gerontology and Geriatrics, 95, 104338. https://doi.org/10.1016/j.archger.2021.104338

Chodzko-Zajko, W. J., Proctor, D. N., Fiatarone Singh, M. A., Minson, C. T., Nigg, C. R., Salem, G. J., & Skinner, J. S. (2009). Exercise and Physical Activity for Older Adults. Medicine & Science in Sports & Exercise, 41(7), 1510. https://doi.org/10.1249/MSS.0b013e3181a0c95c

Córdova-León, K., Saavedra-Ibaca, V., Córdova-Flores, K., Daroch, P., Larena-Galaz, A., Carrasco-Lagos, V., & Allen-de-Novoa, M. (2024). Fiabilidad de la velocidad de la marcha con un método autoreporte y un método de prueba físi-ca en personas mayores de la comunidad (Reliability of gait speed with a self-report method and a physical test met-hod in older people from the community). Retos, 54, 609-615. https://doi.org/10.47197/retos.v54.100345

Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., Martin, F. C., Michel, J.-P., Rol-land, Y., Schneider, S. M., Topinková, E., Vandewoude, M., & Zamboni, M. (2010). Sarcopenia: European consen-sus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and Age-ing, 39(4), 412-423. https://doi.org/10.1093/ageing/afq034

Cuoco, A., Callahan, D. M., Sayers, S., Frontera, W. R., Bean, J., & Fielding, R. A. (2004). Impact of Muscle Power and Force on Gait Speed in Disabled Older Men and Women. The Journals of Gerontology: Series A, 59(11), 1200-1206. https://doi.org/10.1093/gerona/59.11.1200

da Silva, L. S., Fukuchi, R. K., Watanabe, R. N., Fukuchi, C. A., & Duarte, M. (2020). Effects of age and speed on the ankle–foot system’s power during walking. Scientific Reports, 10(1), 14903. https://doi.org/10.1038/s41598-020-71763-8

De Bartolo, D., & Iosa, M. (2018). The Walking Brain: Factors Influencing Human Gait. https://doi.org/10.13140/RG.2.2.22453.93927

De la Cámara, M. Á., Higueras-Fresnillo, S., Sadarangani, K. P., Esteban-Cornejo, I., Martinez-Gomez, D., & Veiga, Ó. L. (2020). Clinical and Ambulatory Gait Speed in Older Adults: Associations With Several Physical, Mental, and Cognitive Health Outcomes. Physical Therapy, 100(4), 718-727. https://doi.org/10.1093/ptj/pzz186

de Lucena Alves, C. P., de Almeida, S. B., Lima, D. P., Neto, P. B., Miranda, A. L., Manini, T., Vlietstra, L., Waters, D. L., Bielemann, R. M., Correa-de-Araujo, R., Fayh, A. P., & Costa, E. C. (2023). Muscle Quality in Older Adults: A Scoping Review. Journal of the American Medical Directors Association, 24(4), 462-467.e12. https://doi.org/10.1016/j.jamda.2023.02.012

Delinocente, M. L. B., de Carvalho, D. H. T., Máximo, R. de O., Chagas, M. H. N., Santos, J. L. F., Duarte, Y. A. de O., Steptoe, A., de Oliveira, C., & Alexandre, T. da S. (2021). Accuracy of different handgrip values to identify mo-bility limitation in older adults. Archives of Gerontology and Geriatrics, 94, 104347. https://doi.org/10.1016/j.archger.2021.104347

DeVita, P., & Hortobagyi, T. (2000). Age causes a redistribution of joint torques and powers during gait. Journal of Ap-plied Physiology (Bethesda, Md.: 1985), 88(5), 1804-1811. https://doi.org/10.1152/jappl.2000.88.5.1804

Ding, D., & Gebel, K. (2012). Built environment, physical activity, and obesity: What have we learned from reviewing the literature? Health & Place, 18(1), 100-105. https://doi.org/10.1016/j.healthplace.2011.08.021

Domínguez-Berjón, M. F., Borrell, C., Cano-Serral, G., Esnaola, S., Nolasco, A., Pasarín, M. I., Ramis, R., Saurina, C., & Escolar-Pujolar, A. (2008). Construcción de un índice de privación a partir de datos censales en grandes ciudades españolas: (Proyecto MEDEA). Gaceta Sanitaria, 22(3), 179-187.

Duan-Porter, W., Vo, T. N., Ullman, K., Langsetmo, L., Strotmeyer, E. S., Taylor, B. C., Santanasto, A. J., Cawthon, P. M., Newman, A. B., Simonsick, E. M., Waters, T. M., & Ensrud, K. E. (2019). Hospitalization-Associated Change in Gait Speed and Risk of Functional Limitations for Older Adults. The Journals of Gerontology: Series A, 74(10), 1657-1663. https://doi.org/10.1093/gerona/glz027

Duchowny, K. A., Peterson, M. D., & Clarke, P. J. (2017). Cut Points for Clinical Muscle Weakness Among Older Americans. American Journal of Preventive Medicine, 53(1), 63-69. https://doi.org/10.1016/j.amepre.2016.12.022

Ellis, P. D. (2010). The Essential Guide to Effect Sizes: Statistical Power, Meta-Analysis, and the Interpretation of Research Results. Cambridge University Press. https://doi.org/10.1017/CBO9780511761676

Eustat. (s. f.). Renta personal media de la C.A. de Euskadi por barrio de residencia de las capitales, según tipo de renta (euros). 2021. Recuperado 14 de marzo de 2024, de https://www.eustat.eus/elementos/ele0006200/renta-personal-media-de-la-ca-de-euskadi-por-barrio-de-residencia-de-las-capitales-segun--tipo-de-renta-euros/tbl0006267_c.html

Felicio, D. C., Pereira, D. S., Assumpção, A. M., de Jesus-Moraleida, F. R., de Queiroz, B. Z., da Silva, J. P., de Brito Rosa, N. M., Dias, J. M. D., & Pereira, L. S. M. (2014). Poor correlation between handgrip strength and isokinetic performance of knee flexor and extensor muscles in community-dwelling elderly women. Geriatrics & Gerontology In-ternational, 14(1), 185-189. https://doi.org/10.1111/ggi.12077

Ferrari, L., Bochicchio, G., Bottari, A., Lucertini, F., Scarton, A., & Pogliaghi, S. (2022). Estimating Muscle Power of the Lower Limbs through the 5-Sit-to-Stand Test: A Comparison of Field vs. Laboratory Method. Applied Sciences, 12(22), Article 22. https://doi.org/10.3390/app122211577

Fitness für Health: The ALPHA-FIT Test Battery for Adults Aged 18–69. Tester’s Manual – ScienceOpen. (s. f.). Recuperado 14 de marzo de 2024, de https://www.scienceopen.com/document?vid=5fa902af-0975-4d8a-8319-b6c5d0ea9d40

Fragala, M. S., Alley, D. E., Shardell, M. D., Harris, T. B., McLean, R. R., Kiel, D. P., Cawthon, P. M., Dam, T.-T. L., Ferrucci, L., Guralnik, J. M., Kritchevsky, S. B., Vassileva, M. T., Gudnason, V., Eiriksdottir, G., Koster, A., Newman, A., Siggeirsdottir, K., Satterfield, S., Studenski, S. A., & Kenny, A. M. (2016). Comparison of Handgrip and Leg Extension Strength in Predicting Slow Gait Speed in Older Adults. Journal of the American Geriatrics Society, 64(1), 144-150. https://doi.org/10.1111/jgs.13871

Franz, J. R. (2016). The Age-Associated Reduction in Propulsive Power Generation in Walking. Exercise and Sport Sciences Reviews, 44(4), 129. https://doi.org/10.1249/JES.0000000000000086

Frutos, X. R. de, Isla, J. R. S., Leguina, A. S., Guereño, P. L., Cadiñanos, I. S. G. de, & Coca, A. (2022). Valores de referencia de la velocidad de la marcha en mayores de 65 años (Reference values for gait speed in elderly over 65 years of age). Retos, 45, 936-942. https://doi.org/10.47197/retos.v45i0.92924

Gill, R., Banky, M., & Williams, G. (2022). Ankle Power Generation Has a Greater Influence on Walking Speed Re-serve Than Balance Following Traumatic Brain Injury. The Journal of Head Trauma Rehabilitation, 37(2), 96-103. https://doi.org/10.1097/HTR.0000000000000684

Guralnik, J. M., Simonsick, E. M., Ferrucci, L., Glynn, R. J., Berkman, L. F., Blazer, D. G., Scherr, P. A., & Wallace, R. B. (1994). A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. Journal of Gerontology, 49(2), M85-94. https://doi.org/10.1093/geronj/49.2.m85

Hainline, G., Hainline, R. D., Handlery, R., & Fritz, S. (s. f.). A Scoping Review of the Predictive Qualities of Walking Speed in Older Adults. Journal of Geriatric Physical Therapy, 10.1519/JPT.0000000000000398. https://doi.org/10.1519/JPT.0000000000000398

Halvarsson, A., Dohrn, I.-M., & Ståhle, A. (2015). Taking balance training for older adults one step further: The ra-tionale for and a description of a proven balance training programme. Clinical Rehabilitation, 29(5), 417-425. https://doi.org/10.1177/0269215514546770

Hebbali, A. (2024). olsrr: Tools for Building OLS Regression Models (Versión 0.6.0) [Software]. https://cran.r-project.org/web/packages/olsrr/index.html

Heymsfield, S. B., Gonzalez, M. C., Lu, J., Jia, G., & Zheng, J. (2015). Skeletal muscle mass and quality: Evolution of modern measurement concepts in the context of sarcopenia. The Proceedings of the Nutrition Society, 74(4), 355-366. https://doi.org/10.1017/S0029665115000129

Hirabayashi, R., Takahashi, Y., Nagata, K., Morimoto, T., Wakata, K., Nakagawa, A., Tachikawa, R., Otsuka, K., & Tomii, K. (2020). The validity and reliability of four-meter gait speed test for stable interstitial lung disease patients: The prospective study. Journal of Thoracic Disease, 12(4), 1296-1304. https://doi.org/10.21037/jtd.2020.02.57

Hortobágyi, T., Lesinski, M., Gäbler, M., VanSwearingen, J. M., Malatesta, D., & Granacher, U. (2015). Effects of Three Types of Exercise Interventions on Healthy Old Adults’ Gait Speed: A Systematic Review and Meta-Analysis. Sports Medicine, 45(12), 1627-1643. https://doi.org/10.1007/s40279-015-0371-2

Hu, B., Cartagena-Farias, J., & Brimblecombe, N. (2022). Functional disability and utilisation of long-term care in the older population in England: A dual trajectory analysis. European Journal of Ageing, 19(4), 1363-1373. https://doi.org/10.1007/s10433-022-00723-0

Huang, S.-T., Lu, W.-H., Lee, W.-J., Peng, L.-N., Chen, L.-K., & Hsiao, F.-Y. (2024). Dose-Responsive Impacts of Social Frailty on Intrinsic Capacity and Healthy Aging among Community-Dwelling Middle-aged and Older Adults: Stronger Roles of Social Determinants over Biomarkers. The Journal of Frailty & Aging. https://doi.org/10.14283/jfa.2024.8

Ikenaga, M., Yamada, Y., Takeda, N., Kimura, M., Higaki, Y., Tanaka, H., Kiyonaga, A., & Nakagawa Study Group. (2014). Dynapenia, gait speed and daily physical activity measured using triaxial accelerometer in older Japanese men. The Journal of Physical Fitness and Sports Medicine, 3(1), 147-154. https://doi.org/10.7600/jpfsm.3.147

Izquierdo, M., & Cadore, E. L. (2024). Multicomponent exercise with power training: A vital intervention for frail older adults. The Journal of Nutrition, Health & Aging, 28(4), 100008. https://doi.org/10.1016/j.jnha.2023.100008

Izquierdo, M., Merchant, R. A., Morley, J. E., Anker, S. D., Aprahamian, I., Arai, H., Aubertin-Leheudre, M., Berna-bei, R., Cadore, E. L., Cesari, M., Chen, L.-K., de Souto Barreto, P., Duque, G., Ferrucci, L., Fielding, R. A., Gar-cía-Hermoso, A., Gutiérrez-Robledo, L. M., Harridge, S. D. R., Kirk, B., … Singh, M. F. (2021). International Ex-ercise Recommendations in Older Adults (ICFSR): Expert Consensus Guidelines. The Journal of nutrition, health and aging, 25(7), 824-853. https://doi.org/10.1007/s12603-021-1665-8

Kerrigan, D. C., Todd, M. K., Della Croce, U., Lipsitz, L. A., & Collins, J. J. (1998). Biomechanical gait alterations independent of speed in the healthy elderly: Evidence for specific limiting impairments. Archives of Physical Medicine and Rehabilitation, 79(3), 317-322. https://doi.org/10.1016/s0003-9993(98)90013-2

Kirk, B., French, C., Gebauer, M., Vogrin, S., Zanker, J., Sales, M., & Duque, G. (2023). Diagnostic power of relative sit-to-stand muscle power, grip strength, and gait speed for identifying a history of recurrent falls and fractures in older adults. European Geriatric Medicine, 14(3), 421-428. https://doi.org/10.1007/s41999-023-00778-x

Lara, K. E. A., Linares, J. C. C., Montilla, J. A. P., & Román, P. Á. L. (2024). Factors influencing gait performance in older adults in a dual-task paradigm. GeroScience. https://doi.org/10.1007/s11357-023-01052-5

Lin, Y.-H., Chen, H.-C., Hsu, N.-W., & Chou, P. (2021). Using hand grip strength to detect slow walking speed in older adults: The Yilan study. BMC Geriatrics, 21(1), 428. https://doi.org/10.1186/s12877-021-02361-0

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243-278. https://doi.org/10.1016/j.cell.2022.11.001

Lyons, J. G., Ensrud, K. E., Schousboe, J. T., McCulloch, C. E., Taylor, B. C., Heeren, T. C., Stuver, S. O., & Fred-man, L. (2016). Slow Gait Speed and Risk of Long-Term Nursing Home Residence in Older Women, Adjusting for Competing Risk of Mortality: Results from the Study of Osteoporotic Fractures. Journal of the American Geriatrics Socie-ty, 64(12), 2522-2527. https://doi.org/10.1111/jgs.14346

Ma Lourdes, D. R.-S., Sergio, A.-R., Francisco, R.-O. J., & Blanco-Saez, M. (2024). Gait speed assessment as a prognos-tic tool for morbidity and mortality in vulnerable older adult patients following vascular surgery. Geriatric Nursing, 56, 25-31. https://doi.org/10.1016/j.gerinurse.2023.12.005

Maharana, A., & Nsoesie, E. O. (2018). Use of Deep Learning to Examine the Association of the Built Environment With Prevalence of Neighborhood Adult Obesity. JAMA Network Open, 1(4), e181535. https://doi.org/10.1001/jamanetworkopen.2018.1535

Malkowski, O. S., Kanabar, R., & Western, M. J. (2023). Socio-economic status and trajectories of a novel multidimen-sional metric of Active and Healthy Ageing: The English Longitudinal Study of Ageing. Scientific Reports, 13(1), 6107. https://doi.org/10.1038/s41598-023-33371-0

Manjavong, M., So-ngern, A., Limpawattana, P., Kamsuanjig, T., Manomaiwong, N., Chokkhatiwat, P., Srisuwannakit, K., & Khammak, C. (2023). Prevalence and factors influencing slow gait speed among geriatric patients at outpatient clinic of a tertiary care hospital. Irish Journal of Medical Science (1971 -), 192(6), 3043-3049. https://doi.org/10.1007/s11845-023-03364-z

Mayrink Ivo, J. F., Sugizaki, C. S. A., Souza Freitas, A. T. V., Costa, N. A., & Peixoto, M. do R. G. (2023). Age, hemo-dialysis time, gait speed, but not mortality, are associated with muscle quality index in end-stage renal disease. Experimental Gerontology, 171, 112035. https://doi.org/10.1016/j.exger.2022.112035

Middleton, A., Fritz, S. L., & Lusardi, M. (2015). Walking Speed: The Functional Vital Sign. Journal of aging and physical activity, 23(2), 314-322. https://doi.org/10.1123/japa.2013-0236

Molero Jurado, M. del M., & Pérez Fuentes, M. del C. (2011). Salud y calidad de vida en adultos mayores institucionali-zados. International Journal of Developmental and Educational Psychology: INFAD. Revista de Psicología, 4(1), 249-258.

Morfis, P., & Gkaraveli, M. (2021). Effects of aging on biomechanical gait parameters in the healthy elderly and the risk of falling. Journal of Research and Practice on the Musculoskeletal System, 05(2), 59-64. https://doi.org/10.22540/JRPMS-05-059

Nascimento, D. da C., Prestes, J., de Sousa Diniz, J., Beal, P. R., Alves, V. P., Stone, W., & Beal, F. L. R. (2020). Comparison of field- and laboratory-based estimates of muscle quality index between octogenarians and young older adults: An observational study. Journal of Exercise Rehabilitation, 16(5), 458-466. https://doi.org/10.12965/jer.2040668.334

Navarrete-Villanueva, D., Gómez-Cabello, A., Marín-Puyalto, J., Moreno, L. A., Vicente-Rodríguez, G., & Casajús, J. A. (2021). Frailty and Physical Fitness in Elderly People: A Systematic Review and Meta-analysis. Sports Medicine, 51(1), 143-160. https://doi.org/10.1007/s40279-020-01361-1

Nogueira, F. R. D., Libardi, C. A., Vechin, F. C., Lixandrão, M. E., de Barros Berton, R. P., de Souza, T. M. F., Conceição, M. S., Cavaglieri, C. R., & Chacon-Mikahil, M. P. T. (2013). Comparison of maximal muscle strength of elbow flexors and knee extensors between younger and older men with the same level of daily activity. Clinical Inter-ventions in Aging, 8, 401-407. https://doi.org/10.2147/CIA.S41838

Noppert, G. A., Brown, C. S., Chanti-Ketterl, M., Hall, K. S., Newby, L. K., Cohen, H. J., & Morey, M. C. (2018). The Impact of Multiple Dimensions of Socioeconomic Status on Physical Functioning Across the Life Course. Geron-tology and Geriatric Medicine, 4, 2333721418794021. https://doi.org/10.1177/2333721418794021

Ogawa, S., Himuro, N., Koyama, M., Seko, T., Mori, M., & Ohnishi, H. (2022). Walking Speed Is Better Than Hand Grip Strength as an Indicator of Early Decline in Physical Function with Age in Japanese Women Over 65: A Longi-tudinal Analysis of the Tanno-Sobetsu Study Using Linear Mixed-Effects Models. International Journal of Environmental Research and Public Health, 19(23), Article 23. https://doi.org/10.3390/ijerph192315769

Osoba, M. Y., Rao, A. K., Agrawal, S. K., & Lalwani, A. K. (2019). Balance and gait in the elderly: A contemporary review. Laryngoscope Investigative Otolaryngology, 4(1), 143-153. https://doi.org/10.1002/lio2.252

Piotrowicz, K., Kujawska-Danecka, H., Jagiełło, K., Hajduk, A., Skalska, A., Mossakowska, M., Zdrojewski, T., Grodzicki, T., & Gąsowski, J. (2023). The national burden of frailty and disproportionate distribution of its compo-nents—the predominance of slow gait speed: A 2018–19 face-to-face epidemiologic assessment representative of population of older Poles. Aging Clinical and Experimental Research, 35(3), 571-579. https://doi.org/10.1007/s40520-022-02331-5

Radford, S. (2021). ASSESSING THE SOCIOECONOMIC GRADIENT OF WALKING SPEED AS A MEASURE OF GENERAL HEALTH AMONG OLDER ADULTS USING THE CANADIAN LONGITUDINAL STUDY ON AGING. https://DalSpace.library.dal.ca//handle/10222/80405

Reider, N., & Gaul, C. (2016). Fall risk screening in the elderly: A comparison of the minimal chair height standing ability test and 5-repetition sit-to-stand test. Archives of Gerontology and Geriatrics, 65, 133-139. https://doi.org/10.1016/j.archger.2016.03.004

Rothermund, K., Englert, C., & Gerstorf, D. (2023). Explaining Variation in Individual Aging, Its Sources, and Conse-quences: A Comprehensive Conceptual Model of Human Aging. Gerontology, 69(12), 1437-1447. https://doi.org/10.1159/000534324

Rstudio Team. (2022). 2022.12.0+353. https://dailies.rstudio.com/version/2022.12.0+353/

Samuel, D., & Rowe, P. (2012). An investigation of the association between grip strength and hip and knee joint mo-ments in older adults. Archives of Gerontology and Geriatrics, 54(2), 357-360. https://doi.org/10.1016/j.archger.2011.03.009

Santamaría-Peláez, M., González-Bernal, J. J., Da Silva-González, Á., Medina-Pascual, E., Gentil-Gutiérrez, A., Fernán-dez-Solana, J., Mielgo-Ayuso, J., & González-Santos, J. (2023). Validity and Reliability of the Short Physical Perfor-mance Battery Tool in Institutionalized Spanish Older Adults. Nursing Reports (Pavia, Italy), 13(4), 1354-1367. https://doi.org/10.3390/nursrep13040114

Shankar, A., McMunn, A., & Steptoe, A. (2010). Health-Related Behaviors in Older Adults: Relationships with Socioec-onomic Status. American Journal of Preventive Medicine, 38(1), 39-46. https://doi.org/10.1016/j.amepre.2009.08.026

Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. American Journal of Applied Mathematics and Statis-tics, 8, 39-42. https://doi.org/10.12691/ajams-8-2-1

Sialino, L. D., Schaap, L. A., van Oostrom, S. H., Picavet, H. S. J., Twisk, J. W. R., Verschuren, W. M. M., Visser, M., & Wijnhoven, H. A. H. (2021). The sex difference in gait speed among older adults: How do sociodemographic, lifestyle, social and health determinants contribute? BMC Geriatrics, 21(1), 340. https://doi.org/10.1186/s12877-021-02279-7

Siglinsky, E., Krueger, D., Ward, R. E., Caserotti, P., Strotmeyer, E. S., Harris, T. B., Binkley, N., & Buehring, B. (2015). Effect of age and sex on jumping mechanography and other measures of muscle mass and function. Journal of Musculoskeletal & Neuronal Interactions, 15(4), 301-308.

Stringhini, S., Carmeli, C., Jokela, M., Avendaño, M., McCrory, C., d’Errico, A., Bochud, M., Barros, H., Costa, G., Chadeau-Hyam, M., Delpierre, C., Gandini, M., Fraga, S., Goldberg, M., Giles, G. G., Lassale, C., Kenny, R. A., Kelly-Irving, M., Paccaud, F., … Kivimäki, M. (2018). Socioeconomic status, non-communicable disease risk fac-tors, and walking speed in older adults: Multi-cohort population based study. BMJ, 360, k1046. https://doi.org/10.1136/bmj.k1046

Studenski, S., Perera, S., Patel, K., Rosano, C., Faulkner, K., Inzitari, M., Brach, J., Chandler, J., Cawthon, P., Con-nor, E. B., Nevitt, M., Visser, M., Kritchevsky, S., Badinelli, S., Harris, T., Newman, A. B., Cauley, J., Ferrucci, L., & Guralnik, J. (2011). Gait Speed and Survival in Older Adults. JAMA, 305(1), 50-58. https://doi.org/10.1001/jama.2010.1923

Sutin, A. R., Cajuste, S., Stephan, Y., Luchetti, M., Kekäläinen, T., & Terracciano, A. (2024). Purpose in life and slow walking speed: Cross-sectional and longitudinal associations. GeroScience. https://doi.org/10.1007/s11357-024-01073-8

Tatangelo, T., Muollo, V., Ghiotto, L., Schena, F., & Rossi, A. P. (2022). Exploring the association between handgrip, lower limb muscle strength, and physical function in older adults: A narrative review. Experimental Gerontology, 167, 111902. https://doi.org/10.1016/j.exger.2022.111902

Team, R. C. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Teo, T. W., Mong, Y., & Ng, S. S. (2013). The repetitive Five-Times-Sit-To-Stand test: Its reliability in older adults. International Journal of Therapy and Rehabilitation, 20(3), 122-130. https://doi.org/10.12968/ijtr.2013.20.3.122

topographic map. (2024). Mapa topográfico Bilbao, altitud, relieve. Mapas topográficos. https://es-es.topographic-map.com/map-4wvgnh/Bilbao/?center=43.23367%2C-2.84951&zoom=11

Vatcheva, K. P., Lee, M., McCormick, J. B., & Rahbar, M. H. (2016). Multicollinearity in Regression Analyses Con-ducted in Epidemiologic Studies. Epidemiology (Sunnyvale, Calif.), 6(2), 227. https://doi.org/10.4172/2161-1165.1000227

Wang, Q., & Fu, H. (2022). Relationship between proprioception and balance control among Chinese senior older adults. Frontiers in Physiology, 13, 1078087. https://doi.org/10.3389/fphys.2022.1078087

WEI, F., HU, Z., HE, R., & WANG, Y. (2023). EFFECTS OF BALANCE TRAINING ON BALANCE AND FALL EFFICACY IN PATIENTS WITH OSTEOPOROSIS: A SYSTEMATIC REVIEW AND META-ANALYSIS WITH TRIAL SEQUENTIAL ANALYSIS. Journal of Rehabilitation Medicine, 55, 4529. https://doi.org/10.2340/jrm.v55.4529

Wickham, Hadley, Romain, François, Lionel Henry, Kirill Müller, & Davis Vaughan. (2022). “Introduction to Dplyr.” https://dplyr.tidyverse.org/articles/dplyr.html.

Wilson, M. G., Michet, C. J., Ilstrup, D. M., & Melton, L. J. (1990). Idiopathic symptomatic osteoarthritis of the hip and knee: A population-based incidence study. Mayo Clinic Proceedings, 65(9), 1214-1221. https://doi.org/10.1016/s0025-6196(12)62745-1

Yamada, Y., Yamada, M., Yoshida, T., Miyachi, M., & Arai, H. (2021). Validating muscle mass cutoffs of four interna-tional sarcopenia‐working groups in Japanese people using DXA and BIA. Journal of Cachexia, Sarcopenia and Muscle, 12(4), 1000-1010. https://doi.org/10.1002/jcsm.12732

Yeung, S. S. Y., Reijnierse, E. M., Trappenburg, M. C., Hogrel, J.-Y., McPhee, J. S., Piasecki, M., Sipila, S., Salpakoski, A., Butler-Browne, G., Pääsuke, M., Gapeyeva, H., Narici, M. V., Meskers, C. G. M., & Maier, A. B. (2018). Handgrip Strength Cannot Be Assumed a Proxy for Overall Muscle Strength. Journal of the American Medical Directors Association, 19(8), 703-709. https://doi.org/10.1016/j.jamda.2018.04.019

Descargas

Publicado

2024-10-02

Cómo citar

Virto, N., Río, X. ., Muñoz-Pérez, I., Méndez-Zorrilla, A. ., & García-Zapirain, B. (2024). Velocidad de la marcha en adultos mayores: explorando el impacto de factores funcionales, físicos y sociales (Gait speed in older adults: exploring the impact of functional, physical and social factors). Retos, 61, 552–566. https://doi.org/10.47197/retos.v61.109902

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a