Yerba Mate y ácido clorogénico reducen ansiedad y déficits cognitivos causados por el desentrenamiento en ratones

Autores/as

  • Evandro Toledo Gerhardt Stutz Barra Mansa Center University (UBM)
  • Vladimir Lopes de Souza Barra Mansa Center University (UBM)
  • Patricia Luciene da Costa Teixeira Barra Mansa Center University (UBM) https://orcid.org/0000-0002-3781-3123
  • Geraldo Ceni Coelho Federal University of Fronteira Sul
  • Rodrigo Rodrigues da Conçeição Unifesp https://orcid.org/0000-0002-1260-4296
  • Claudia Cardoso Netto Universidade Federal do Estado do Rio de Janeiro (UNIRIO)
  • Carlos Alberto Bastos de Maria Universidade Federal do Estado do Rio de Janeiro (UNIRIO) https://orcid.org/0000-0002-6732-1568
  • Roberto Laureano-Melo Federal Rural University of Rio de Janeiro (UFRRJ) https://orcid.org/0000-0001-6146-3971

DOI:

https://doi.org/10.47197/retos.v63.107820

Palabras clave:

Ácido clorogénico, ansiedad, depresión, yerba mate

Resumen

Objetivo: En el presente estudio, investigamos si la administración de Yerba Mate (YM) y uno de sus componentes bioactivos, el ácido clorogénico, son capaces de revertir los cambios de comportamiento negativos inducidos por el desentrenamientoMetodología: Para este propósito, los animales fueron divididos aleatoriamente en cinco grupos experimentales (n=10): el grupo sedentario, el grupo entrenado, el grupo de desentrenamiento, el grupo de desentrenamiento tratado con yerba mate y el grupo de desentrenamiento tratado con ácido clorogénico. El grupo entrenado fue sometido a un entrenamiento de natación durante 8 semanas (5 días/semana, 60 min/día), mientras que los grupos de desentrenamiento realizaron el mismo programa de natación durante 4 semanas y luego discontinuaron el ejercicio por 4 semanas. Los animales fueron pesados semanalmente durante el tratamiento. Después de 8 semanas, los sujetos se sometieron a una batería de pruebas de comportamiento, incluyendo: campo abierto, tarea de reconocimiento de objetos, caja de luz-oscuridad y prueba de suspensión de la cola Resultados: Hubo cambios significativos en el peso relativo de la grasa epididimal entre el grupo de desentrenamiento y los otros grupos experimentales. También se demostró que la actividad física promovió un efecto antidepresivo en los ratones entrenados. Sin embargo, el desentrenamiento prolongado elimina este efecto. Además, el desentrenamiento causa un aumento en el comportamiento similar a la ansiedad en comparación con el grupo entrenado y un deterioro de la memoria en comparación con los ratones sedentarios y entrenados. Curiosamente, estos efectos perjudiciales inducidos por el desentrenamiento son parcialmente revertidos por el tratamiento con yerba mate o ácido clorogénico. No se observó ninguna diferencia en la prueba de campo abiertoConclusiones: Por lo tanto, la yerba mate y el ácido clorogénico revierten parcialmente los cambios de comportamiento y el deterioro cognitivo causados por el desentrenamiento.

Citas

Ahmed, H., Blaha, M., Nasir, K., … J. R.-T. A. journal of, & 2012, undefined. (n.d.). Effects of physical activity on cardiovascular disease. Elsevier. Retrieved January 24, 2023, from https://www.sciencedirect.com/science/article/pii/S0002914911027597?casa_token=YJ16Chw9c-cAAAAA:UjX2_nf0Xd1G1NMGTMAEXmXVC37PfWH8VF2f79EHTZbNFrGSoWHaBSPFOlYD_usWM8KRsi105h8

Akkerman, S., Blokland, A., Reneerkens, O., van Goethem, N. P., Bollen, E., Gijselaers, H. J. M., Lieben, C. K. J., Steinbusch, H. W. M., & Prickaerts, J. (2012). Object recognition testing: Methodological considerations on exploration and discrimination measures. Behavioural Brain Research. https://doi.org/10.1016/j.bbr.2012.03.022

Bawari, S., Tewari, D., Argüelles, S., Sah, A. N., Nabavi, S. F., Xu, S., Vacca, R. A., Nabavi, S. M., & Shirooie, S. (2019). Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. In Pharmacological Research (Vol. 148). https://doi.org/10.1016/j.phrs.2019.104458

Bracesco, N., Sanchez, A. G., Contreras, V., Menini, T., & Gugliucci, A. (2011). Recent advances on Ilex paraguariensis research: Minireview. In Journal of Ethnopharmacology (Vol. 136, Issue 3). https://doi.org/10.1016/j.jep.2010.06.032

Carbone, S., Del Buono, M. G., Ozemek, C., & Lavie, C. J. (2019). Obesity, risk of diabetes and role of physical activity, exercise training and cardiorespiratory fitness. In Progress in Cardiovascular Diseases (Vol. 62, Issue 4). https://doi.org/10.1016/j.pcad.2019.08.004

Castrén, E., & Monteggia, L. M. (2021). Brain-Derived Neurotrophic Factor Signaling in Depression and Antidepressant Action. In Biological Psychiatry (Vol. 90, Issue 2). https://doi.org/10.1016/j.biopsych.2021.05.008

Chen, S. Der, Wu, C. L., Hwang, W. C., & Yang, D. I. (2017). More insight into BDNF against neurodegeneration: Anti-apoptosis, anti-oxidation, and suppression of autophagy. In International Journal of Molecular Sciences (Vol. 18, Issue 3). https://doi.org/10.3390/ijms18030545

Chen, Y. T., Hsieh, Y. Y., Ho, J. Y., Lin, T. Y., & Lin, J. C. (2022). Two weeks of detraining reduces cardiopulmonary function and muscular fitness in endurance athletes. European Journal of Sport Science, 22(3). https://doi.org/10.1080/17461391.2021.1880647

Coelho, G. C., Riachi, L. G., Marcellini, P. S., & De Maria, C. A. B. (2019). Yerba Mate Consumption Effect on the Total Concentration of Creatine Phosphokinase in Healthy Volunteers from the Age of 50. European Journal of Medical and Health Sciences, 1(3). https://doi.org/10.24018/ejmed.2019.1.3.58

Colucci-D’amato, L., Speranza, L., & Volpicelli, F. (2020). Neurotrophic factor bdnf, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. In International Journal of Molecular Sciences (Vol. 21, Issue 20). https://doi.org/10.3390/ijms21207777

Corvos-Hidalgo, C., Melendez-Gallardo, J., Pintos-Toledo, E., Silveira, A., & Souza-Marabotto, F. (2024). Ejercicio físico y diabetes mellitus tipo 1: Una revisión narrativa (Physical exercise and type 1 diabetes mellitus: A narrative review). *Retos*, 51, 159–166. https://doi.org/10.47197/retos.v51.99366

Crawley, J., & Goodwin, F. K. (1980). Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacology, Biochemistry and Behavior, 13(2), 167-170. https://doi.org/10.1016/0091-3057(80)90067-2

de Souza, V. L., Stutz, E. T. G., De S. F. Pehrson, M. E., Coelho, G. C., Netto, C. C., & de Maria, C. A. B. (2021). Ilex paraguariensisA. St.-Hil. (Yerba Mate) Differently Regulates the Lipid Mobilization and, Irisin and Lactate Levels in Sedentary and Chronic Swimming Mice. European Journal of Medical and Health Sciences, 3(6). https://doi.org/10.24018/ejmed.2021.3.6.1088

Dos-Santos, R. C., Silva-Almeida, C., Marinho, B. G., Conceição, R. R., Côrtes, W. S., Ahmed, R. G., & Laureano-Melo, R. (2023). Perinatal N(G)-Nitro-L-arginine methyl ester administration decreases anxiety- and depression-like behaviors in adult mice. Einstein (São Paulo), 21, eAO0302. https://doi.org/10.31744/einstein_journal/2023AO0302

DIshman, R. K., McDowell, C. P., & Herring, M. P. (2021). Customary physical activity and odds of depression: A systematic review and meta-analysis of 111 prospective cohort studies. In British Journal of Sports Medicine (Vol. 55, Issue 16). https://doi.org/10.1136/bjsports-2020-103140

Farzi, M. A., Sadigh-Eteghad, S., Ebrahimi, K., & Talebi, M. (2019). Exercise Improves Recognition Memory and Acetylcholinesterase Activity in the Beta Amyloid-Induced Rat Model of Alzheimer’s Disease. Annals of Neurosciences, 25(3). https://doi.org/10.1159/000488580

Flori, L., Testai, L., & Calderone, V. (2021). The “irisin system”: From biological roles to pharmacological and nutraceutical perspectives. In Life Sciences (Vol. 267). https://doi.org/10.1016/j.lfs.2020.118954

Friedman, M. A., Szczepankiewicz, R. P., & Kohn, D. H. (2018). Combined mineral-supplemented diet and exercise increases bone mass and strength after eight weeks and maintains increases after eight weeks detraining in adult mice. PLoS ONE, 13(9). https://doi.org/10.1371/journal.pone.0204470

Gómez Chávez, L. F. J., Cortés Almanzar, P., Rodríguez Melchor, V. Z. del C., Salazar Pérez, J. I., & Gómez Chávez, M. Y. (2022). Actividad física y cáncer: una revisión bibliométrica 2016-2021 [Physical activity and cancer: A bibliographic review 2016-2021]. Retos, 45, 622–627. https://doi.org/10.47197/retos.v45i0.92728

Huang, X., Zhao, X., Li, B., Cai, Y., Zhang, S., Wan, Q., & Yu, F. (2022). Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia: A systematic review and network meta-analysis. In Journal of Sport and Health Science (Vol. 11, Issue 2). https://doi.org/10.1016/j.jshs.2021.05.003

Izquierdo-Gabarren, M., De Txabarri Expósito, R. G., De Villarreal, E. S. S., & Izquierdo, M. (2010). Physiological factors to predict on traditional rowing performance. European Journal of Applied Physiology, 108(1). https://doi.org/10.1007/s00421-009-1186-3

Kraemer, B. R., Yoon, S. O., & Carter, B. D. (2014). The biological functions and signaling mechanisms of the p75 neurotrophin receptor. Handbook of Experimental Pharmacology, 220. https://doi.org/10.1007/978-3-642-45106-5_6

Kurosawa, M., Okada, K., Sato, A., & Uchida, S. (1993). Extracellular release of acetylcholine, noradrenaline and serotonin increases in the cerebral cortex during walking in conscious rats. Neuroscience Letters, 161(1). https://doi.org/10.1016/0304-3940(93)90143-9

Kwon, S. H., Lee, H. K., Kim, J. A., Hong, S. I., Kim, H. C., Jo, T. H., Park, Y. I., Lee, C. K., Kim, Y. Bin, Lee, S. Y., & Jang, C. G. (2010). Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. European Journal of Pharmacology, 649(1–3). https://doi.org/10.1016/j.ejphar.2010.09.001

Leger, M., Quiedeville, A., Bouet, V., Haelewyn, B., Boulouard, M., Schumann-Bard, P., & Freret, T. (2013). Object recognition test in mice. Nature Protocols. https://doi.org/10.1038/nprot.2013.155

Lima Giacobbo, B., Doorduin, J., Klein, H. C., Dierckx, R. A. J. O., Bromberg, E., & de Vries, E. F. J. (2019). Brain-Derived Neurotrophic Factor in Brain Disorders: Focus on Neuroinflammation. In Molecular Neurobiology (Vol. 56, Issue 5). https://doi.org/10.1007/s12035-018-1283-6

Liu, D., Wang, H., Zhang, Y., & Zhang, Z. (2020). Protective effects of chlorogenic acid on cerebral ischemia/reperfusion injury rats by regulating oxidative stress-related nrf2 pathway. Drug Design, Development and Therapy, 14. https://doi.org/10.2147/DDDT.S228751

Mazzucatto, F., Higa, T. S., Fonseca-Alaniz, M. H., & Evangelista, F. S. (2014). Reversal of metabolic adaptations induced by physical training after two weeks of physical detraining. International Journal of Clinical and Experimental Medicine, 7(8).

McDowell, C. P., Dishman, R. K., Gordon, B. R., & Herring, M. P. (2019). Physical Activity and Anxiety: A Systematic Review and Meta-analysis of Prospective Cohort Studies. In American Journal of Preventive Medicine (Vol. 57, Issue 4). https://doi.org/10.1016/j.amepre.2019.05.012

Mctiernan, A., Friedenreich, C. M., Katzmarzyk, P. T., Powell, K. E., Macko, R., Buchner, D., Pescatello, L. S., Bloodgood, B., Tennant, B., Vaux-Bjerke, A., George, S. M., Troiano, R. P., & Piercy, K. L. (2019). Physical Activity in Cancer Prevention and Survival: A Systematic Review. In Medicine and Science in Sports and Exercise (Vol. 51, Issue 6). https://doi.org/10.1249/MSS.0000000000001937

Mineur, Y. S., Obayemi, A., Wigestrand, M. B., Fote, G. M., Calarco, C. A., Li, A. M., & Picciotto, M. R. (2013). Cholinergic signaling in the hippocampus regulates social stress resilience and anxiety- and depression-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 110(9). https://doi.org/10.1073/pnas.1219731110

Miranda, M., Morici, J. F., Zanoni, M. B., & Bekinschtein, P. (2019). Brain-Derived Neurotrophic Factor: A Key Molecule for Memory in the Healthy and the Pathological Brain. In Frontiers in Cellular Neuroscience (Vol. 13). https://doi.org/10.3389/fncel.2019.00363

Murach, K. A., Mobley, C. B., Zdunek, C. J., Frick, K. K., Jones, S. R., McCarthy, J. J., Peterson, C. A., & Dungan, C. M. (2020). Muscle memory: myonuclear accretion, maintenance, morphology, and miRNA levels with training and detraining in adult mice. Journal of Cachexia, Sarcopenia and Muscle, 11(6). https://doi.org/10.1002/jcsm.12617

Orba-Pinheiro, C. J., Gama Linhares, D., Lima dos Santos, L., Pereira Salustiano Mallen da Silva, G. C., Maria Almeida de Figueiredo, N., Eduardo Jofré-Saldía, E., Oliveira Barros dos Santos, A., Brandão Pinto de Castro, J., & Gomes de Souza Vale, R. (2024). Prescripción de ejercicio físico para mujeres posmenopáusicas con osteopenia u osteoporosis basada en una revisión sistemática de ensayos clínicos aleatorizados [Prescription of physical exercise for postmenopausal women with osteopenia or osteoporosis based on a systematic review of randomized clinical trials]. Retos, 52, 647–656. https://doi.org/10.47197/retos.v52.102439

Paffenbarger, R. S., Blair, S. N., & Lee, I. M. (2001). A history of physical activity, cardiovascular health and longevity: the scientific contributions of Jeremy N Morris, DSc, DPH, FRCP. International Journal of Epidemiology, 30(5), 1184–1192. https://doi.org/10.1093/IJE/30.5.1184

Pedersen, B. K. (2019). Physical activity and muscle–brain crosstalk. In Nature Reviews Endocrinology (Vol. 15, Issue 7). https://doi.org/10.1038/s41574-019-0174-x

Perakakis, N., Triantafyllou, G. A., Fernández-Real, J. M., Huh, J. Y., Park, K. H., Seufert, J., & Mantzoros, C. S. (2017). Physiology and role of irisin in glucose homeostasis. In Nature Reviews Endocrinology (Vol. 13, Issue 6). https://doi.org/10.1038/nrendo.2016.221

Pesce, M., Fratta, I. La, Paolucci, T., Grilli, A., Patruno, A., Agostini, F., Bernetti, A., Mangone, M., Paoloni, M., Invernizzi, M., & de Sire, A. (2021). From exercise to cognitive performance: role of irisin. In Applied Sciences (Switzerland) (Vol. 11, Issue 15). https://doi.org/10.3390/app11157120

Petek, B. J., Groezinger, E. Y., Pedlar, C. R., & Baggish, A. L. (2022). Cardiac effects of detraining in athletes: A narrative review. In Annals of Physical and Rehabilitation Medicine (Vol. 65, Issue 4). https://doi.org/10.1016/j.rehab.2021.101581

Physical activity. (n.d.). Retrieved January 24, 2023, from https://www.who.int/news-room/fact-sheets/detail/physical-activity

Pinheiro, M. B., Oliveira, J., Bauman, A., Fairhall, N., Kwok, W., & Sherrington, C. (2020). Evidence on physical activity and osteoporosis prevention for people aged 65+ years: a systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. In International Journal of Behavioral Nutrition and Physical Activity (Vol. 17, Issue 1). https://doi.org/10.1186/s12966-020-01040-4

Pisani, S., Mueller, C., Huntley, J., Aarsland, D., & Kempton, M. J. (2021). A meta-analysis of randomised controlled trials of physical activity in people with Alzheimer’s disease and mild cognitive impairment with a comparison to donepezil. In International Journal of Geriatric Psychiatry (Vol. 36, Issue 10). https://doi.org/10.1002/gps.5581

Porsolt, R. D., Le Pichon, M., & Jalfre, M. (1977). Depression: A new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730-732. https://doi.org/10.1038/266730a0

Prut, L., & Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. European Journal of Pharmacology, 463(1-3), 3-33. https://doi.org/10.1016/s0014-2999(03)01272-x

Radak, Z., Toldy, A., Szabo, Z., Siamilis, S., Nyakas, C., Silye, G., Jakus, J., & Goto, S. (2006). The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochemistry International, 49(4). https://doi.org/10.1016/j.neuint.2006.02.004

Riachi, L. G., & De Maria, C. A. B. (2017). Yerba mate: An overview of physiological effects in humans. In Journal of Functional Foods (Vol. 38). https://doi.org/10.1016/j.jff.2017.09.020

Riachi, L. G., Simas, D. L. R., Coelho, G. C., Marcellini, P. S., Ribeiro da Silva, A. J., & Bastos de Maria, C. A. (2018). Effect of light intensity and processing conditions on bioactive compounds in maté extracted from yerba mate (Ilex paraguariensis A. St.-Hil.). Food Chemistry, 266. https://doi.org/10.1016/j.foodchem.2018.06.028

Rodrigues da Conceição, R., Laureano-Melo, R., da Silva Almeida, C., Cenélia Matos da Silva, A., Luiz Bezerra da Silveira, A., Vidal Linhares, R., Porto Marassi, M., Akemi Sato, M., Giannoco, G., Costa e Silva, G., & Côrtes, W. (2024). El entrenamiento isométrico promueve cambios en la acetilcolinesterasa y la fuerza muscular [Isometric training promotes changes in acetylcholinesterase and muscle strength]. Retos, 55, 72–77. https://doi.org/10.47197/retos.v55.103877

Roth, K. A., & Katz, R. J. (1979). Stress, behavioral arousal, and open field activity: A reexamination of emotionality in the rat. Neuroscience & Biobehavioral Reviews, 3(4), 247-263. https://doi.org/10.1016/0149-7634(79)90012-5

Santos, E. C. S., Bicca, M. A., Blum-Silva, C. H., Costa, A. P. R., dos Santos, A. A., Schenkel, E. P., Farina, M., Reginatto, F. H., & de Lima, T. C. M. (2015). Anxiolytic-like, stimulant and neuroprotective effects of Ilex paraguariensis extracts in mice. Neuroscience, 292. https://doi.org/10.1016/j.neuroscience.2015.02.004

Schmolesky, M. T., Webb, D. L., & Hansen, R. A. (2013). The effects of aerobic exercise intensity and duration on levels of brain- derived neurotrophic factor in healthy men. Journal of Sports Science and Medicine, 12(3).

Sertie, R. A. L., Andreotti, S., Proença, A. R. G., Campana, A. B., Lima-Salgado, T. M., Batista, M. L., Seelaender, M. C. L., Curi, R., Oliveira, A. C., & Lima, F. B. (2013). Cessation of physical exercise changes metabolism and modifies the adipocyte cellularity of the periepididymal white adipose tissue in rats. Journal of Applied Physiology, 115(3). https://doi.org/10.1152/japplphysiol.01272.2012

Sertié, R. A. L., Andreotti, S., Proença, A. R. G., Campaña, A. B., & Lima, F. B. (2015). Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats. Brazilian Journal of Medical and Biological Research, 48(7). https://doi.org/10.1590/1414-431X20154356

Tavassoli, H., Heidarianpour, A., & Hedayati, M. (2022). The effects of resistance exercise training followed by de-training on irisin and some metabolic parameters in type 2 diabetic rat model. Archives of Physiology and Biochemistry, 128(1). https://doi.org/10.1080/13813455.2019.1673432

Teich, T., Pivovarov, J. A., Porras, D. P., Dunford, E. C., & Riddell, M. C. (2017). Curcumin limits weight gain, adipose tissue growth, and glucose intolerance following the cessation of exercise and caloric restriction in rats. Journal of Applied Physiology, 123(6). https://doi.org/10.1152/japplphysiol.01115.2016

Vasileva, L. V., Savova, M. S., Amirova, K. M., Balcheva-Sivenova, Z., Ferrante, C., Orlando, G., Wabitsch, M., & Georgiev, M. I. (2020). Caffeic and chlorogenic acids synergistically activate browning program in human adipocytes: Implications of AMPK-and PPAR-mediated pathways. International Journal of Molecular Sciences, 21(24). https://doi.org/10.3390/ijms21249740

Ventriglia, M., Zanardini, R., Bonomini, C., Zanetti, O., Volpe, D., Pasqualetti, P., Gennarelli, M., & Bocchio-Chiavetto, L. (2013). Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Research International, 2013. https://doi.org/10.1155/2013/901082

Walsh, R. N., & Cummins, R. A. (1976). The open-field test: A critical review. Psychological Bulletin, 83(3), 482-504.

Widenfalk, J., Olson, L., & Thorén, P. (1999). Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neuroscience Research, 34(3). https://doi.org/10.1016/S0168-0102(99)00051-6

Xu, L., Long, J., Su, Z., Xu, B., Lin, M., Chen, Y., & Long, D. (2019). Restored presynaptic synaptophysin and cholinergic inputs contribute to the protective effects of physical running on spatial memory in aged mice. Neurobiology of Disease, 132. https://doi.org/10.1016/j.nbd.2019.104586

Yao, J., Peng, S., Xu, J., & Fang, J. (2019). Reversing ROS-mediated neurotoxicity by chlorogenic acid involves its direct antioxidant activity and activation of Nrf2-ARE signaling pathway. BioFactors, 45(4). https://doi.org/10.1002/biof.1507

Zhao, S., Yang, T., Hou, X., Zhang, H., Zhao, Y., Wang, H., Sun, N., Tan, H., Zhang, J., & Fan, H. (2022). Chlorogenic acid ameliorates chronic stress-induced prefrontal cortex injury through activating the 5-HT/BDNF signaling pathway in rats. Food Bioscience, 50, 102179. https://doi.org/10.1016/J.FBIO.2022.102179

Zuccato, C., & Cattaneo, E. (2009). Brain-derived neurotrophic factor in neurodegenerative diseases. In Nature Reviews Neurology (Vol. 5, Issue 6). https://doi.org/10.1038/nrneurol.2009.54

Descargas

Publicado

2025-01-28

Cómo citar

Toledo Gerhardt Stutz, E., Lopes de Souza, V., Luciene da Costa Teixeira, P., Ceni Coelho, G., Rodrigues da Conçeição, R. ., Cardoso Netto, C. ., Alberto Bastos de Maria, C., & Laureano-Melo, R. (2025). Yerba Mate y ácido clorogénico reducen ansiedad y déficits cognitivos causados por el desentrenamiento en ratones. Retos, 63, 503–515. https://doi.org/10.47197/retos.v63.107820

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a