El entrenamiento isométrico promueve cambios en la acetilcolinesterasa y la fuerza muscular (Isometric training promotes changes in acetylcholinesterase and muscle strength)

Autores/as

DOI:

https://doi.org/10.47197/retos.v55.103877

Palabras clave:

Isometric Strength Training, Solear, Extensor Digitorum Longus and Enzyme.

Resumen

Introducción: El entrenamiento de fuerza isométrica (EFI) es un componente importante de diferentes tipos de deportes y otras actividades de la vida diaria. Sin embargo, hasta la fecha, ningún estudio ha relacionado el entrenamiento de fuerza isométrica con cambios en la actividad de la acetilcolinesterasa (AChE). Objetivo: Evaluar los efectos del EFI sobre la actividad de la AChE y la fuerza muscular. Material y Métodos: Las ratas Wistar (n =20) se dividieron en 2 grupos: Grupo Control (Ctr) (sedentario) y Grupo Entrenado (ETr) (sometido a 8 semanas de entrenamiento de fuerza isométrica). Se evaluaron la fuerza muscular y la actividad acetilcolinesterasa en el músculo soleo (SOL) y el músculo extensor largo de los dedos (ELD). Resultados: El peso corporal de los animales entrenados fue 7.39% menor (p < 0.01) y el peso de los ELD fue 25% mayor (p < 0.05) respecto a las ratas Ctr. Hubo un aumento de 30.36% de fuerza en los animales entrenados. cuarta semana (p < 0,006) y 26,41% en la octava semana de entrenamiento (p < 0,003). Además, se observó un aumento del 46,64% en la actividad de AChE en el SOL. Por el contrario, hubo una reducción del 55,36% en la actividad de la AChE en ELD. Conclusión: Nuestros hallazgos indican que el EFI con baja sobrecarga puede causar cambios bioquímicos, zoométricos y funcionales.

Palabras clave: Entrenamiento de Fuerza Isométrica, Soleo, Extensor Largo de los Dedos y Enzimas.

Abstract. Introduction: Isometric strength training (IST) is an important component of different types of sport and others activities of daily life. However, until the present moment, no studies have linked the isometric strength training with acetylcholinesterase (AChE) activity changes. Objective: We evaluated the effects of IST on the muscular AChE activity and strength. Materials and Methods: Wistar rats (n =20) were divided into 2 groups: Control group (Ctr) (sedentary) and trained group (Tr) (submitted to 8 weeks of Isometric strength training). The muscle strength and the acetylcholinesterase activity were evaluated in the solear (SOL) and Extensor Digitorum Longus (EDL) muscles. Results: The body weight of the trained animals was 7.39 % lower than in Ctr rats (p < 0.01) and the EDL weight was 25 % higher (p < 0.05) compared to Ctr. Further, an increase of 30.36 % in strength was observed in the fourth week (p < 0.006) and 26.41 % in eighth week (p < 0.003) of training. In addition, we found an increase of 46.64% in AChE activity in the SOL. In contrast, a reduction of 55.36% in AChE activity in the EDL was observed. Conclusion: Our findings indicate that biochemical, zoometric and functional changes can be evoked by IST with low overload.

Keywords: Isometric Strength Training, Solear, Extensor Digitorum Longus and Enzyme.

Citas

Abe, T., DeHoyos, D. V., Pollock, M. L., & Garzarella, L. (2000). Time course for strength and muscle thickness changes following upper and lower body resistance training in men and women. European Journal of Applied Physiology and Occupational Physiology, 81(3), 174-180. https://doi.org/10.1007/s004210050027

Anglister, L. (1991). Acetylcholinesterase from the motor-nerve terminal accumulates on the synaptic basal lamina of the myofiber. Journal of Cell Biology, 115(3), 755-764. https://doi.org/10.1083/jcb.115.3.755

Anglister, L., Etlin, A., Finkel, E., Durrant, A. R., & Lev-Tov, A. (2008) Cholinesterases in development and dis-ease. Chemico-Biological Interactions, 175(1-3), 92-100. https://doi.org/10.1016/j.cbi.2008.04.046

Barthold, S. W., Bayne, K. A., & Davis, M. A. (2011). Guide for the care and use of laboratory animals, 8th edition.

Bertelli, J. A., & Mira, J. C. (1995). The grasping test - a simple behavioral-method for objective quantitative assess-ment of peripheral-nerve regeneration in the rat. Journal of Neuroscience Methods, 58(1-2), 151-155. https://doi.org/10.1016/0165-0270(94)00169-h

Blotnick, E., Hamra-Amitai, Y., Wald, C., Brenner, T., & Anglister, L. (2012). Changes in acetylcholinesterase in experimental autoimmune myasthenia gravis and in response to treatment with a specific antisense. The European Journal of Neuroscience, 36(8), 3077-3085. https://doi.org/10.1111/j.1460-9568.2012.08218.x.

Bonnet, N., Laroche, N., Beaupied, H., Vico, L., Dolleans, E., Benhamou, C. L., & Courteix, D. (2007). Doping dose of salbutamol and exercise training: impact on the skeleton of ovariectomized rats. Journal of Applied Physiology (1985), 103(2), 524-533. https://doi.org/10.1152/japplphysiol.01319.2006

Castro Jimenez, L. E., Galvez Pardo, A. Y., Guzman Quintero, G. A., & Garcia Muñoz, A. I. (2019). Explosive strength in older adults, training effects on maximum strength. Retos, 36, 64-68. https://doi.org/10.47197/retos.v36i36.66715

Cohen, J. (1977). Statistical power analysis for behavioral sciences (revised ed.). New York: Academic Press.

Costa e Silva, G., Costa, P. B., Conceição, R. R., Pimenta, L., Almeida, R. L., & Sato, M. A. (2019). Acute effects of different static stretching exercise orders on cardiovascular and autonomic responses. Scientific Reports, 9(1), 15738. https://doi.org/10.1038/s41598-019-52055-2

Decker, M. M., & Berman, H. A. (1990). Denervation-induced alterations of acetylcholinesterase in denervated and nondenervated muscle. Experimental Neurology, 109(2), 247-55. https://doi.org/10.1016/0014-4886(90)90080-c

Ellman, G. L., Courtney, K. D., Adres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determina-tion of acetylcholinesterase activity. Biochemical Pharmacology, 7(1), 88-95. https://doi.org/10.1016/0006-2952(61)90145-9

Farzi, M. A., Sadigh-Eteghad, S., Ebrahimi, K., & Talebi, M. (2019). Exercise Improves Recognition Memory and Acetylcholinesterase Activity in the Beta Amyloid-Induced Rat Model of Alzheimer's Disease. Annals of Neurosci-ence, 25(3), 121‐125. https://doi.org/10.1159/000488580

Figard, H., Gaume, V., Mougin, F., Demeougeot, C., & Berthelot, A. (2006). Beneficial effects of isometric strength training on endothelial dysfunction in rats. Applied Physiology, Nutrition, and Metabolism, 31(5), 621-630. https://doi.org/10.1139/h06-070

Finer, J. T., Simmons, R. M., & Spudich, J. A. (1994). Single myosin molecule mechanics - piconewton forces and nanometer steps. Nature, 368(6467), 113-119. https://doi.org/10.1038/368113a0

Galaviz Berelleza, R., Trejo, M., Borbón Román, J. C., Alarcón Meza, E. I., Pineda Espejel, H. A., Arrayales Millan, E. M., Robles Hernández, G. S., & Cutti Riveros, L. (2021). Effect of a strength training program on IGF-1 in older adults with obesity and controlled hypertension. Retos, 39, 253-256. https://doi.org/10.47197/retos.v0i39.74723

Garfinkel, S., & Cafarelli, E. (1992). Relative changes in maximal force, emg, and muscle cross-sectional area after isometric training. Medicine and Science in Sports and Exercise, 24(11), 1220-1227. PMID: 1435173

Gaspersic, R., Koritnik, B., Crne-Finderle, N., & Sketelj, J. (1999). Acetylcholinesterase in the neuromuscular junc-tion. Chemico-Biological Interactions, 119(1), 301-308.

Gorzi, A., Hajabi, H., Gharakhanlou, R., & Azad, A. (2013). Effects of Endurance Training on A12 Acetyl Cholines-terase Activity in Fast and Slow-Twitch Skeletal Muscles of Male Wistar Rats. Zahedan Journal of Research in Medical Science, 15(10), 28-31.

Jasmin, B. J., & Gisiger, V. (1990). Regulation by exercise of the pool of g4-acetylcholinesterase characterizing fast muscles - opposite effect of running training in antagonist muscles. Journal of Neuroscience, 10(5), 1444-1454. https://doi.org/10.1523/JNEUROSCI.10-05-01444.1990

Kaufer, D., Friedman, A., Pavlovsky, L., & Soreq, H. (1998). Stress and acetylcholinesterase responses promote de-layed alterations in hippocampal function. Neuroscience Letters, S22-S22.

Kovacs, K. J. (1998). c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochemistry In-ternational, 33(4), 287-297. https://doi.org/10.1016/s0197-0186(98)00023-0

Kraemer, W. J., & Ratamess, N. A. (2004). Fundamentals of resistance training: Progression and exercise prescrip-tion. Medicine and Science in Sports and Exercise, 36(4), 674-688. https://doi.org/10.1249/01.mss.0000121945.36635.61

Lac, G., & Cavalie, H. (1999). A rat model of progressive isometric strength training. Archives of Physiology and Bio-chemistry, 107(2), 144-151. https://doi.org/10.1076/apab.107.2.144.4337

Le-Cerf Paredes, L., Valdés-Badilla, P., & Guzman Muñoz, E. (2022). Effects of strength training on the fitness in boys and girls with overweight and obesity: a systematic review. Retos, 43, 233-242. https://doi.org/10.47197/retos.v43i0.87756

Marcel, V., Palacios, L. G., Pertuy, C., Masson, P., & Fournier, D. (1998). Two invertebrate acetylcholinesterases show activation followed by inhibition with substrate concentration. The Biochemical Journal, 329(2), 329-334. https://doi.org/10.1042/bj3290329

Morey, E. R., Sabelman, E. E., Turner, R. T., & Baylink, D. J. (1979). A new rat model simulating some aspects of space flight. Physiologist, 22(6), S23-S24. PMID: 545372

Moritani, T., & Devries, H. A. (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. American Journal of Physical Medicine and Rehabilitation, 58(3), 115-130. PMID: 453338.

Navarrete, R., & Vrbova, G. (1983). Changes of activity patterns in slow and fast muscles during postnatal-development. Developmental Brain Research, 8(1), 11-19. https://doi.org/10.1016/0165-3806(83)90152-9

Nikbin, S., Tajik, A., Allahyari, P., Matin, G., Roote, S. S. H., Barati, E., Ayazi, M., Karimi, L., Yazdi, F. D., Ja-vadinead, N., Azarbayjni, M. A. (2020). Aerobic exercise and eugenol supplementation ameliorated liver injury in-duced by chlorpyrifos via modulation acetylcholinesterase activation and antioxidant defense. Environmental Toxi-cology, 35(7), 783-793. https://doi.org/10.1002/tox.22913

Pastuszewska1, B., Ochtabinska1, A., & Morawski, A. (2000). A note on the nutritional adequacy of stock diets for laboratory rats and mice. Journal of Animal and Feed Sciences, 9(3), 533-542. https://doi.org/10.22358/jafs/68075/2000

Pereira, J. M., Costa e Silva, G., Conceição, R. R., Laureano-Melo, R., Giannocco, G., Sato, M. A., Bentes, C. M., & Simão, R. (2022). Influence of Resistance Training Exercise Order on Acute Thyroid Hormone Responses. Inter-national Journal of Exercise Science, 15(2), 760-770. PMID: 35992182

Pregelj, P., & Sketelj, J. (2002). Role of load bearing in acetylcholinesterase regulation in rat skeletal muscles. Journal of Neuroscience Research, 67(1), 114-121. https://doi.org/10.1002/jnr.3000

Puls, T., Wu, J. J., Zimmerman, T. L., Zhang, L., Ehrliche, B. E, Berchtold, M. W., HoekJ. B., Karpen, S. J., Na-thanson, M. H., & Bennett, A. M. (2002). Epidermal growth factor-mediated activation of the ETS domain tran-scription factor Elk-1 requires nuclear calcium. The Journal of Biological Chemistry, 277(30), 27517-27527 https://doi.org/27517-27527. 10.1074/jbc.M203002200

Rojas-Quinchavil, G., Venegas-Jeldrez, P., Valencia, O., Guzmán-Venegas, R., Araneda, O. F., de la Rosa, F. J. B., & Flores-Leon, A. F. (2021). Hip and thigh muscular activity in professional soccer players during an isometric squat with and witho. Retos, 39(39), 697-704. https://doi.org/10.47197/RETOS.V0I39.82024

Rosenberry, T. L. (1979). Quantitative simulation of endplate currents at neuromuscular-junctions based on the reac-tion of acetylcholine with acetylcholine-receptor and acetylcholinesterase. Biophysical Journal, 26(2), 263-289. https://doi.org/10.1016/S0006-3495(79)85249-2

Soreq, H., & Seidman, S. (2001). Acetylcholinesterase - new roles for an old actor. Nature Reviews Neuroscience, 2(4), 294-302. https://doi.org/10.1038/35067589

Sosa Izquierdo, J. J., Salas Sánchez, J., & Latorre Román, P. Ángel. (2024). Characterization of strength training in professional and semi-professional soccer players in Spanish leagues. Retos, 53, 453-460. https://doi.org/10.47197/retos.v53.100614

Tamaki, T., Uchiyama, S., & Nakano, S. A. (1992) Weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Medicine and Science in Sports and Exercise, 24(8), 881-886. PMID: 1406173.

Xu, M. L., Bi, C. W. C., Cheng, L. K. W., Mak, S., Yao, P., Luk, W. K. W., Lau, K. K. M., Cheng, A. W. M., & Tsim, K. W. K. (2015). Reduced Expression of P2Y2 Receptor and Acetylcholinesterase at Neuromuscular Junc-tion of P2Y1 Receptor Knock-out Mice. Journal of Molecular Neuroscience, 57(3), 446-451. https://doi.org/10.1007/s12031-015-0591-9

Descargas

Publicado

2024-03-27

Cómo citar

Rodrigues da Conceição, R. ., Laureano-Melo, R. ., da Silva Almeida, C. ., Cenélia Matos da Silva, A., Luiz Bezerra da Silveira, A. ., Vidal Linhares, R., Porto Marassi, M., Akemi Sato, M., Giannoco, G., Costa e Silva , G. ., & Côrtes, W. (2024). El entrenamiento isométrico promueve cambios en la acetilcolinesterasa y la fuerza muscular (Isometric training promotes changes in acetylcholinesterase and muscle strength). Retos, 55, 72–77. https://doi.org/10.47197/retos.v55.103877

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas