El efecto del entrenamiento concurrente en la glucosa, perfil lipídico, las enzimas hepáticas y la peroxidación lipídica en hombres jóvenes (The effect of concurrent training on glucose, lipid profile, liver enzymes, and lipid peroxidation in young men)

Autores/as

DOI:

https://doi.org/10.47197/retos.v58.106483

Palabras clave:

Entrenamiento concurrente, Estrés oxidativo, Oxidación de lípidos, Niveles de glucosa, perfil lipídico, enzimas hepáticas.

Resumen

El objetivo de este estudio fue determinar el efecto del entrenamiento concurrente (EC) en glucosa, función hepática, perfil lipídico y estrés oxidativo en hombres jóvenes. Dieciséis hombres jóvenes moderadamente activos (Edad= 23.11 ± 4.20 años, Altura= 172.44 ± 6.50 cm, Peso= 73.52 ± 15.70 kg, IMC= 24.84 ± 5.85 kg/m2) entrenaron durante doce semanas en bloques separados de adaptación, desarrollo y mantenimiento, durante cuatro semanas cada uno. Se recolectaron muestras de sangre al inicio y después del EC para determinar MDA, glucosa, TG, LDL-c, HDL-c, ALT y AST. Se compararon las puntuaciones mediante pruebas t de medidas repetidas.

Nuestros resultados mostraron que no se observaron cambios significativos en el peso corporal (M= -0.14, p= 0.748, IC del 95%=-0.79, 0.99), IMC (M= 0.04, p= 0.803, IC del 95%=-0.27, 0.32), glucosa (M= 0.88, p= 0.679, IC del 95%=-2.87, 4.63), colesterol (M= -0.19, p= 0.957, IC del 95%=-7.00, 7.00), triglicéridos (M= -9.00, p= 0.325, IC del 95%=-25.19, 7.73), HDL-c (M= -0.60, p= 0.811, IC del 95%=-6.52, 3.42), LDL-c (M= 2.20, p= 0.494, IC del 95%=-4.20, 8.77), AST (M= -0.13, p= 0.954, IC del 95%=-3.94, 3.00), ALT (M= 0.25, p= 0.923, IC del 95%=-3.19, 4.44), VLDL (M= -1.80, p= 0.325, IC del 95%=-5.04, 1.55) y MDA (M= 0.06, p= 0.621, IC del 95%=-0.16, 0.29). El 40% de los participantes respondieron positivamente al programa de EC.

Nuestros hallazgos revelaron que un programa de EC de cuatro semanas no afectó los marcadores de estrés oxidativo en adultos jóvenes. Además, los no respondedores a la intervención deben ser seguidos cuidadosamente para determinar su umbral personal de mejora.

Palabras clave: Entrenamiento concurrente, estrés oxidativo, glucosa, enzimas hepáticas.

Abstract. The objective of this study was to determine the effect of concurrent training (CT) on glucose, liver function, lipid profile, and oxidative stress in young men. Sixteen moderately active young men (Age= 23.11 ± 4.20 yr., Height= 172.44 ± 6.50 cm, Weight= 73.52 ± 15.70 kg, BMI= 24.84 ± 5.85 kg/m2) trained for twelve weeks in separate in blocks of adaptation, development, and maintenance for four weeks each. Blood samples were collected at baseline and after CT to determine MDA glucose, TG, LDL-c, HDL-c, ALT, and AST. Repeated measures t-tests compared scores. Our results showed that no significant changes were observed in body weight (M= -0.14, p= 0.748, 95%CI= -0.79, 0.99), BMI (M= 0.04, p= 0.803, 95%CI= -0.27, 0.32), glucose (M= 0.88, p= 0.679, 95%CI= -2.87, 4.63), cholesterol (M= -0.19, p= 0.957, 95%CI= -7.00, 7.00), triglycerides (M= -9.00, p= 0.325, 95%CI= -25.19, 7.73), HDL-c (M= -0.60, p= 0.811, 95%CI= -6.52, 3.42), LDL-c (M= 2.20, p= 0.494, 95%CI= -4.20, 8.77), AST (M= -0.13, p= 0.954, 95%CI= -3.94, 3.00), ALT (M= 0.25, p= 0.923, 95%CI= -3.19, 4.44), VLDL (M= -1.80, p= 0.325, 95%CI= -5.04, 1.55), and MDA (M= 0.06, p= 0.621, 95%CI= -0.16, 0.29). The 40% of the participants responded positively to the CT program. Our findings revealed that a four-week CT program did not affect oxidative stress markers in young adults. Additionally, non-responders to the intervention should be carefully followed up to determine their personal threshold for improvement.

Keywords: Concurrent training, Oxidative stress, Lipid oxidation, Glucose, liver enzymes.

Citas

Arazi, H., Jorbonian, A., & Asghari, E. (2013). Comparison of concurrent (resistance-aerobic) and aerobic training on VO2max lipid profile, blood glucose and blood pressure in middle-aged men at risk for cardiovascular dis-ease. SSU_Journals, 20(5), 627-638. http://jssu.ssu.ac.ir/article-1-2225-en.html

Baba, C. S., Alexander, G., Kalyani, B., Pandey, R., Rastogi, S., Pandey, A., & Choudhuri, G. (2006). Effect of exercise and dietary modification on serum aminotransferase levels in patients with nonalcoholic steatohepatitis. Journal of gastroen-terology and hepatology, 21(1), 191-198. https://doi.org/10.1111/j.1440-1746.2005.04233.x

Ceci, R., Beltran-Valls, M. R., Duranti, G., Dimauro, I., Quaranta, F., Pittaluga, M., Sabatini, S., Caserotti, P., Parisi, P., Parisi, A., & Caporossi, D. (2014). Oxidative stress responses to a graded maximal exercise test in older adults following explosive-type resistance training. Redox Biology, 2, 65-72. https://doi.org/10.1016/j.redox.2013.12.004

Da Silva Medeiros, N., De Abreu, F. G., Colato, A. S., De Lemos, L. S., Ramis, T. R., Dorneles, G. P., Funchal, C., & Dani, C. (2015). Effects of Concurrent Training on Oxidative Stress and Insulin Resistance in Obese Individu-als. Oxidative Medicine And Cellular Longevity, 2015, 1-6. https://doi.org/10.1155/2015/697181

Davis, W. J., Wood, D. T., Andrews, R. G., Elkind, L. M., & Davis, W. B. (2008). Concurrent training enhances athletes' strength, muscle endurance, and other measures. The Journal of Strength & Conditioning Research, 22(5), 1487-1502. https://doi.org/10.1519/JSC.0b013e3181739f08

Gamboa-Gómez, C. I., González-Laredo, R. F., Gallegos-Infante, J. A., Pérez, M. D. M. L., Moreno-Jiménez, M. R., Flo-res-Rueda, A. G., & Rocha-Guzmán, N. E. (2016). Antioxidant and angiotensin-converting enzyme inhibitory activity of Eucalyptus camaldulensis and Litsea glaucescens infusions fermented with kombucha consortium. Food Technology and Biotechnology, 54(3), 367. https://doi.org/10.17113/ftb.54.03.16.4622.

Ghahramanloo, E., Midgley, A. W., & Bentley, D. J. (2009). The effect of concurrent training on blood lipid profile and anthropometrical characteristics of previously untrained men. Journal of Physical Activity and Health, 6(6), 760-766. https://doi.org/10.1123/jpah.6.6.760

Gibala, M. J., Little, J. P., MacDonald, M. J., & Hawley, J. A. (2012). Physiological adaptations to low‐volume, high‐intensity interval training in health and disease. The Journal of physiology, 590(5), 1077-1084. https://doi.org/10.1113/jphysiol.2011.224725

Hopkins, W. G. (2000). Measures of reliability in sports medicine and science. Sports medicine, 30, 1-15. https://doi.org/10.2165/00007256-200030010-00001

Kang, J., & Ratamess, N. (2014). Which comes first? Resistance before aerobic exercise or vice versa?. ACSM's Health & Fitness Journal, 18(1), 9-14. https://doi.org/10.1249/FIT.0000000000000004

Kawamura, T., & Muraoka, I. (2018). Exercise-induced oxidative stress and the effects of antioxidant intake from a physio-logical viewpoint. Antioxidants, 7(9), 119. https://doi.org/10.3390/antiox7090119

Kistler, K. D., Brunt, E. M., Clark, J. M., Diehl, A. M., Sallis, J. F., Schwimmer, J. B., & Nash Crn Research Group. (2011). Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver dis-ease. Official journal of the American College of Gastroenterology| ACG, 106(3), 460-468. https://doi.org/10.1038/ajg.2010.488

Mastaloudis, A., Leonard, S. W., & Traber, M. G. (2001). Oxidative stress in athletes during extreme endurance exer-cise. Free radical biology and medicine, 31(7), 911-922. https://doi.org/10.1016/S0891-5849(01)00667-0

Mateos, R., Lecumberri, E., Ramos, S., Goya, L., & Bravo, L. (2005). Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. Journal of Chromatography B, 827(1), 76-82. https://doi.org/10.1016/j.jchromb.2005.06.035

Moreno, F. J., & Ordoño, E. M. (2009). Aprendizaje motor y síndrome general de adaptación. Motricidad. European Jour-nal of Human Movement, 22, 1-19.

Ocaña, M. D. (1998). Síndrome de Adaptación General. La naturaleza de los estímulos estresantes. Escuela abierta, 2, 41-50.

Radak, Z., Chung, H. Y., Koltai, E., Taylor, A. W., & Goto, S. (2008). Exercise, oxidative stress and hormesis. Ageing research reviews, 7(1), 34-42. https://doi.org/10.1016/j.arr.2007.04.004

Radak, Z., Zhao, Z., Koltai, E., Ohno, H., & Atalay, M. (2013). Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants & redox signaling, 18(10), 1208-1246. https://doi.org/10.1089/ars.2011.4498

Rebillard, A., Lefeuvre-Orfila, L., Gueritat, J., & Cillard, J. (2013). Prostate cancer and physical activity: adaptive response to oxidative stress. Free radical biology and medicine, 60, 115-124. https://doi.org/10.1016/j.freeradbiomed.2013.02.009

Salehani, S. K., & Alizadeh, R. (2019). Effect of eight weeks of concurrent training on liver enzymes, lipid profile, and insu-lin resistance among overweight male children. Ufuq-i Dānish, 25(4), 312-323. https://doi.org/10.32598/hms.25.4.312

Siems, W. G., Grune, T., & Esterbauer, H. (1995). 4-Hydroxynonenal formation during ischemia and reperfusion of rat small intestine. Life sciences, 57(8), 785-789. https://doi.org/10.1016/0024-3205(95)02006-5

Sofra, X., & Badami, S. (2020). Adverse effects of sedentary lifestyles: Inflammation, and high-glucose induced oxidative stress—A double blind randomized clinical trial on diabetic and prediabetic patients. Health, 12(8), 1029-1048. https://doi.org/10.4236/health.2020.128076

Teixeira de Lemos, E., Oliveira, J., Páscoa Pinheiro, J., & Reis, F. (2012). Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus. Oxidative medicine and cellular longevi-ty, 2012. https://doi.org/10.1155/2012/741545

Valko, M., Rhodes, C. J. B., Moncol, J., Izakovic, M. M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions, 160(1), 1-40. https://doi.org/10.1016/j.cbi.2005.12.009

Voulgaridou, G. P., Anestopoulos, I., Franco, R., Panayiotidis, M. I., & Pappa, A. (2011). DNA damage induced by endoge-nous aldehydes: current state of knowledge. Mutation Research/Fundamental and Molecular Mechanisms of Mutagene-sis, 711(1-2), 13-27. https://doi.org/10.1016/j.mrfmmm.2011.03.006

Zabet, A., Ghazalian, F., & Nik-Bakht, H. (2019). Effects of Different Intensities of a Nine-Week Resistance Training on Serum Levels of Malondialdehyde in Young Sedentary Men. Journal of Clinical Research in Paramedical Sciences, 8(1). https://doi.org/10.5812/jcrps.88093

Descargas

Publicado

2024-09-01

Cómo citar

Flores-Moreno, P. J., Del Rio Valdivia, J. E., Rojas Larios, F., Gamboa Gómez, C. I., Martínez Aguilar, G., & Moncada Jiménez, J. (2024). El efecto del entrenamiento concurrente en la glucosa, perfil lipídico, las enzimas hepáticas y la peroxidación lipídica en hombres jóvenes (The effect of concurrent training on glucose, lipid profile, liver enzymes, and lipid peroxidation in young men). Retos, 58, 769–775. https://doi.org/10.47197/retos.v58.106483

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas