Efectos crónicos del entrenamiento y posterior desentrenamiento físico sobre la histología y morfometría del tejido adiposo en ratas Wistar adultas (Chronic effects of training and subsequent physical detraining on histology and morphometry of adi-pose tissue in adult Wistar rats)

Autores/as

DOI:

https://doi.org/10.47197/retos.v57.105020

Palabras clave:

Exercise; Lipids; adipose tissue; General adaptation syndrome; superconpensation, Ejercicio; Lípidos; tejido adiposo; Síndrome de adaptación general; supercompensación

Resumen

El objetivo del estudio fue analizar los efectos del ejercicio físico y el posterior desentrenamiento sobre los parámetros histológicos y morfométricos del tejido adiposo blanco (TAB) y del tejido adiposo pardo (TAP). También se investigaron la tolerancia a la insulina y la glucosa. Fue un estudio experimental con tres grupos: entrenamiento continuo de intensidad moderada (ECIM), entrenamiento interválico de alta intensidad (EIAI) y grupo control (GC). Se realizaron tres evaluaciones: preintervención, tras 8 semanas de entrenamiento y tras 4 semanas de desentrenamiento. Se realizó una ecuación de estimación generalizada para (grupo por momento), con Bonferroni post-hoc para grupo y momento en el análisis del área y peso de los adipocitos. Para analizar la tasa de desintegración y el área bajo la curva entre grupos, se realizó ANOVA unidireccional. Para el estudio intragrupo, se realizó ANOVA de medidas repetidas con Bonferroni post-hoc. Se observó un aumento entre T2 y T3 en el área de tejido adiposo perilumbar (747,3 ± 28,4 μm2 vs. 853,0 ± 15,7 μm2, p ≤ 0,01) y perirrenal (770,3 ± 11,4 μm2 vs. 830,9 ± 18,6 μm2, p ≤ 0,01) independientemente del grupo, así como un aumento en el área TAP subescapular de T1 a T3 (419,9 ± 38,5 μm2 vs. 751,8 ± 27,5 μm2, p ≤ 0,001). Los pesos de los tejidos adiposos pardos perirrenal, perilumbar y subescapular fueron menores en EIAI y ECIM en comparación con el GC (p ≤ 0,001). Se observó que después del desentrenamiento, el cálculo de la caída de la glucemia mostró una diferencia estadísticamente significativa (F = 8,79; p= 0,005) entre GC y EIAI (0,78 % vs. 1,82 %), con mayor porcentaje promedio para EIAI. Se concluye que 8 semanas de ECIM y EIAI son eficientes para el control de peso y área de tejido adiposo; sin embargo, este control se pierde después de 4 semanas de desentrenamiento, e incluso después de este período, el EIAI mostró una mejor sensibilidad a la insulina.

Palabras clave: Ejercicio; Lípidos; tejido adiposo; Síndrome de adaptación general; Supercompensación

Abstract. The objective of the study was to analyze the effects of physical exercise and subsequent detraining on histological and morphometric parameters of white adipose tissue (WAT) and brown adipose tissue (BAT). Also investigated were insulin and glucose tolerance. It was an experimental study with three groups: continuous moderate-intensity training (CMIT), high-intensity interval training (HIIT), and a control group (CG). Three assessments were carried out: pre-intervention, after 8 weeks of training, and after 4 weeks of detraining. A generalized estimation equation was performed for (group x moment), with Bonferroni post-hoc for group and moment in the analysis of adipocyte area and weight. A one-way ANOVA was performed to analyze the decay rate and the area under the curve between groups. For the intragroup study, repeated measures ANOVA with Bonferroni post-hoc was performed. An increase was observed between T2 and T3 in the area of perilumbar adipose tissue (747.3 ± 28.4 µm2 vs. 853.0 ± 15.7 µm2, p ≤ 0.01) and perirenal (770.3 ± 11.4 µm2 vs. 830 .9 ± 18.6 µm2, p ≤ 0.01) regardless of the group, as well as an increase in the subscapular BAT area from T1 to T3 (419.9 ± 38.5 µm2 vs. 751.8 ± 27.5 µm2, p ≤ 0.001). The weights of perirenal, perilumbar, and subscapular brown adipose tissues were lower in HIIT and CMIT compared to the CG (p ≤ 0.001). It was observed that after detraining, the calculation of the decline in glycemia showed a statistically significant difference (F = 8.79; p = 0.005) between CG and HIIT (0.78 % vs. 1.82 %), with a higher average percentage for HIIT. It is concluded that 8 weeks of CMIT and HIIT are efficient for weight control and adipose tissue area; however, this control is lost after 4 weeks of detraining, and even after this period, HIIT showed better insulin sensitivity.

Keywords: Exercise; Lipids; Adipose tissue; General adaptation syndrome; Supercompensation.

Citas

Bellicha, A., Van Baak, M. A., Battista, F., Beaulieu, K., Blundell, J. E., Busetto, L., Carraça, E. V., Dicker, D., Encantado, J., Ermolao, A., Farpour-Lambert, N., Pramono, A., Woodward, E., & Oppert, J. M. (2021). Effect of exercise training on weight loss, body composition changes, and weight maintenance in adults with overweight or obesity: An overview of 12 systematic reviews and 149 studies. Obesity Reviews, 22(S4). doi: 10.1111/obr.13256

Bogardus, C., Thuillez, P., Ravussin, E., Vasquez, B., Narimiga, M., & Azhar, S. (1983). Effect of Muscle Glycogen Deple-tion on In Vivo Insulin Action in Man. The Journal of clinical investigation, 72, 1605-1610. doi.org/10.1172/JCI111119

Carballo, M. C. S., Pinto, L. C. S., & Brito, M. V. H. (2020). The role of adiponectin in ischemia-reperfusion syndrome: a literature review. Einstein, 18, 1-6. doi: 10.31744/einstein_journal/2020rw5160

Dambha-Miller, H., Day, A. J., Strelitz, J., Irving, G., & Griffin, S. J. (2020). Behavior change, weight loss and remission of Type 2 diabetes: a community-based prospective cohort study. Diabetic Medicine, 37(4), 681–688. doi: 10.1111/dme.14122

Del Vecchio Fabrício, Coswig Victor, Cabistany Leo, Orcy Rafael, & Gentil PAulo. (2020). Effects of exercise cessation on adipose tissue physiological markers related to fat regain: A systematic review. Open Medicine, 8, 1–14. doi: 10.1177/2050312120936956

Dimenna, F. J., & Arad, A. D. (2021). The acute vs. chronic effect of exercise on insulin sensitivity: nothing lasts forever. In Cardiovascular Endocrinology and Metabolism 10(3), 149–161. doi: 10.1097/XCE.0000000000000239

Gerard Koch, L., Britton, S. L., Gerard, L., & Britton Artifi, S. L. (2001). Artificial selection for intrinsic aerobic endurance running capacity in rats. Retrieved from http://physiolgenomics.physiology.org

Gobatto, F. de B. M. (2007). Protocolos invasivos e não invasivos para avaliação aeróbia e anaeróbia de ratos wistar. Uni-versidade Estadual Paulista.

Hill, J. O., Wyatt, H. R., & Peters, J. C. (2013). The importance of energy balance. European Endocrinology, 9(2), 111–115. doi: 10.17925/ee.2013.09.02.111

Jelleyman, C., Yates, T., O’Donovan, G., Gray, L. J., King, J. A., Khunti, K., & Davies, M. J. (2015). The effects of high-intensity interval training on glucose regulation and insulin resistance: A meta-analysis. In Obesity Reviews, 16(11), 942–961. doi: 10.1111/obr.12317

Jesus, L. A. S., Gravani, E. P. L., Neto, M. N. F., Miguel, C., Ribeiro, J., Talma, A., Bergamani, B., & Reboredo, M. (2019). Physical exercise and obesity: prescription and benefits. HU Revista, 44(2), 269–276.

Lehnen, A. M., Leguisamo, N. M., Pinto, G. H., Markoski, M. M., De Angelis, K., Machado, U. F., & Schaan, B. (2010). The beneficial effects of exercise in rodents are preserved after detraining: A phenomenon unrelated to GLUT4 ex-pression. Cardiovascular Diabetology, 9. doi: 10.1186/1475-2840-9-67

Lillie Ralph. (1965). Histopathologic technic and practical histochemistry (3rd ed.). New York: mcgraw-hill book company.

Liu, Y., Dong, G., Zhao, X., Huang, Z., Li, P., & Zhang, H. (2020). Post-exercise Effects and Long-Term Training Adapta-tions of Hormone Sensitive Lipase Lipolysis Induced by High-Intensity Interval Training in Adipose Tissue of Mice. Frontiers in Physiology, 11. doi: 10.3389/fphys.2020.535722

Matthews, J., Atman Douglas, Campbell MJ, & Royston Patrick. (1990). Analysis of serial measurements in medical re-search. BMJ, pp. 300, 230–235. doi: 10.1136/bmj.300.6719.230

Nikooie Rohollah, & Samaneh Sajadian. (2016). Exercise-induced lactate accumulation regulates intramuscular triglycer-ide metabolism via transforming growth factor-β1 mediated pathways. Molecular and Cellular Endocrinology, 419, 244–251.doi: 10.1016/j.mce.2015.10.024

Paravidino, V. B., Mediano, M. F. F., & Sichieri, R. (2021). Physical Exercise, Energy Expenditure, and Weight Loss: An Assumption not Always Observed in Practice. In International Journal of Cardiovascular Sciences, 34(6), 734–736. Sociedade Brasileira de Cardiologia. doi: 10.36660/ijcs.20200090

Pontzer, H. (2015). Constrained Total Energy Expenditure and the Evolutionary Biology of Energy Balance. Exercise and Sport Sciences Reviews, 43(3), 110–116. doi: 10.1249/JES.0000000000000048

Rosenwald, M., & Wolfrum, C. (2014). The origin and definition of brite versus white and classical brown adipocytes. Adipocyte, 3(1), 4–9. doi: 10.4161/adip.26232

Rowland T. W. (1998). The biological basis of physical activity. Medicine and Science in Sports and Exercise, 30, 392–399. doi: 10.1097/00005768-199803000-00009

Ryan, B. J., Schleh, M. W., Ahn, C., Ludzki, A. C., Gillen, J. B., Varshney, P., Van Pelt, D. W., Pitchford, L. M., Chenevert, T. L., Gioscia-Ryan, R. A., Howton, S. M., Rode, T., Hummel, S. L., Burant, C. F., Little, J. P., & Horowitz, J. F. (2020). Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. Journal of Clinical Endocrinology and Metabolism, 105(8), E2941–E2959. doi: 10.1210/clinem/dgaa345

Schnaider, J. M., & Borges, B. E. (2021). Tecido adiposo marrom em adultos como alvo de estudo no desenvolvimento de novas terapias para o manejo e tratamento da obesidade: uma revisão integrativa. Revista de Medicina, 100(5), 460–471. Doi: 10.11606/issn.1679-9836.v100i5p460-471

Selye, H. (1936). A syndrome produced by diverse nocuous agents. Nature, 32–32.

Sertié, R. A. L., Andreotti, S., Proença, A. R. G., Campaña, A. B., & Lima, F. B. (2015). Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats. Brazilian Journal of Medical and Biological Research, 48(7), 650–653. doi: 10.1590/1414-431X20154356

Sertie, R. A. L., Andreotti, S., Proença, A. R. G., Campana, A. B., Lima-Salgado, T. M., Batista, M. L., Seelaender, M. C. L., Curi, R., Oliveira, A. C., & Lima, F. B. (2013). Cessation of physical exercise changes metabolism and modifies the adipocyte cellularity of the periepididymal white adipose tissue in rats. Journal of Applied Physiology, 115(3), 394–402. doi: 10.1152/japplphysiol.01272.2012

Shakoor, H., Kizhakkayil, J., Khalid, M., Mahgoub, A., & Platat, C. (2023). Effect of Moderate-Intense Training and De-training on Glucose Metabolism, Lipid Profile, and Liver Enzymes in Male Wistar Rats: A Preclinical Randomized Study. Nutrients, 15(17). doi: 10.3390/nu15173820

Teich, T., Pivovarov, J. A., Porras, D. P., Dunford, E. C., & Riddell, M. C. (2017). Curcumin limits weight gain, adipose tissue growth, and glucose intolerance following the cessation of exercise and caloric restriction in rats. J Appl Physiol, 123, 1625–1634. doi: 10.1152/japplphysiol.01115.2016.

Trettel, C. dos S., Pelozin, B. R. de A., Barros, M. P., Bachi, A. L. L., Braga, P. G. S., Momesso, C. M., Furtado, G. E., Va-lente, P. A., Oliveira, E. M., Hogervorst, E., & Fernandes, T. (2023). Irisin: An anti-inflammatory exerkine in aging and redox-mediated comorbidities. In Frontiers in Endocrinology (Vol. 14). Frontiers Media S.A. doi: 10.3389/fendo.2023.1106529

Türk, Y., Theel, W., Kasteleyn, M. J., Franssen, F. M. E., Hiemstra, P. S., Rudolphus, A., Taube, C., & Braunstahl, G. J. (2017). High intensity training in obesity: a Meta-analysis. Obesity Science and Practice, 3(3), 258–271. doi: 10.1002/osp4.109

Vecchiato, M., Zanardo, E., Battista, F., Quinto, G., Bergia, C., Palermi, S., Duregon, F., Ermolao, A., & Neunhaeuserer, D. (2023). The Effect of Exercise Training on Irisin Secretion in Patients with Type 2 Diabetes: A Systematic Review. Journal of Clinical Medicine, 12(1). doi: 10.3390/jcm12010062

Vissers, D., Hens, W., Taeymans, J., Baeyens, J. P., Poortmans, J., & Van Gaal, L. (2013). The Effect of Exercise on Visceral Adipose Tissue in Overweight Adults: A Systematic Review and Meta-Analysis. PLoS ONE, 8(2). doi: 10.1371/journal.pone.0056415

Descargas

Publicado

2024-08-03

Cómo citar

de Souza, A., de Moraes Siqueira, G., de Oliveira Campello Felix, A., Castilho de Barros, C., Xavier Cruz, L. A., Bueno Orcy, R., & Boscolo del Vecchio, F. (2024). Efectos crónicos del entrenamiento y posterior desentrenamiento físico sobre la histología y morfometría del tejido adiposo en ratas Wistar adultas (Chronic effects of training and subsequent physical detraining on histology and morphometry of adi-pose tissue in adult Wistar rats). Retos, 57, 48–55. https://doi.org/10.47197/retos.v57.105020

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas

Artículos más leídos del mismo autor/a