Frecuencia de zancada durante la carrera de resistencia en tapiz rodante y al aire libre (Stride frequency patterns during both treadmill and outdoor running in endurance runners)

Autores/as

DOI:

https://doi.org/10.47197/retos.v57.104569

Palabras clave:

Cadencia, Economía de Carrera, Velocidad, Exterior (Cadence, Running Economy, Velocity, Outdoor)

Resumen

Los objetivos fueron i) estudiar la concordancia entre un reloj deportivo (Suunto Ambit2) y un sistema fotoeléctrico (Optogait) como instrumento referencia para medir la frecuencia de zancada (FZ) y la longitud de zancada (LZ); ii) observar las FZ y LZ durante la carrera al aire libre; y iii) analizar el efecto de la manipulación de la FZ en la economía de carrera monitorizada por un analizador de gases en función de las FZ encontradas en el análisis observacional. Ciento-sesenta corredores fueron analizados entre 8-14 km·h-1. El dispositivo Suunto Ambit2 concordó con el sistema de referencia en la medición de la FZ y la LZ [r=0.99 (0.99-1.00); Error Típico de la Estimación=0.58 zancadas∙min-1 y 0.02m]. Los corredores mantuvieron una FZ constante [Coeficiente de Variación (CV)=2.4%] aun cuando hubo variaciones en la velocidad (CV=6.8%), y dependieron de la LZ (CV=6.5%) durante las carreras al aire libre. Por último, los corredores mantuvieron un bajo coste de carrera con su FZ autoseleccionada (media=81.3 zancadas∙min-1), aunque un incremento hasta el 12% podría ser beneficioso cuando la velocidad varía sin detrimento en el coste de carrera.

Palabras clave: Cadencia, Economía de Carrera, Velocidad, Exterior

 Abstract. This study aimed i) to study the agreement between a sports watch (Suunto Ambit2) with a  photoelectric device (Optogait) as a reference instrument on measuring stride frequencies (SF) and stride lengths (SL); ii) to observe the stride patterns during outdoor running; and iii) to analyse the effect of SF manipulations on running economy monitored by a gas analyser and based on the observational analysis. One hundred and sixty recreational runners were analysed at speeds between 8-14 km·h-1. The Suunto Ambit2 agreed with the reference system [r=0.99 (0.99-1.00); Typical Error of the Estimate=0.58 strides∙min-1 and 0.02m]. Runners tended to maintain SF constant [Coefficient of Variation (CV)=2.4%]) during variations in speed (CV=6.8%) while relied on SL (CV=6.5%) adjustments during outdoor running. Finally, runners seemed to maintain a low running cost with their auto-selected SF (average=81.3 strides∙min-1), but an increase of up to 12% could be benefit when speed changes, without running cost detriment.

Key words: Cadence, Running Economy, Velocity, Outdoor.

Citas

Adams, D., Pozzi, F., Carroll, A., Rombach, A., & Zeni Jr, J. (2016). Validity and reliability of a commercial fitness watch for measuring running dynamics. Journal of orthopaedic & sports physical therapy, 46(6), 471-476.

Alonso, D. (2003). La aplicación de los ritmos de carrera en el entrenamiento de la prueba de maratón para la mejora del rendimiento mediante la utilización de las reservas lipolíticas. Revista Internacional de Medicina y Ciencias de la Ac-tividad Física y del Deporte, 3(9), 1.

Amano, T., Ishitobi, M., Ogura, Y., Inoue, Y., Koga, S., Nishiyasu, T., & Kondo, N. (2016). Effect of stride frequency on thermoregulatory responses during endurance running in distance runners. Journal of thermal biology, 61, 61-66

Barton, C. J., Bonanno, D. R., Carr, J., Neal, B. S., Malliaras, P., Franklyn-Miller, A., & Menz, H. B. (2016). Run-ning retraining to treat lower limb injuries: a mixed-methods study of current evidence synthesised with expert opinion. British journal of sports medicine, 50(9), 513-526.

Brughelli, M., Cronin, J., & Chaouachi, A. (2011). Effects of running velocity on running kinetics and kinematics. The Journal of Strength & Conditioning Research, 25(4), 933-939.

Cavanagh, P. R., & Kram, R. (1989). Stride length in distance running: velocity, body dimensions, and added mass effects. Med Sci Sports Exerc, 21(4), 467-79.

Cavanagh, P. R., & Williams, K. R. (1982). The effect of stride length variation on oxygen uptake during distance running. Medicine and science in sports and exercise, 14(1), 30-35.

Cheung, R. T., & Davis, I. S. (2011). Landing pattern modification to improve patellofemoral pain in runners: a case series. Journal of orthopaedic & sports physical therapy, 41(12), 914-919.

Cohen, J. (1962). The statistical power of abnormal-social psychological research: a review. The Journal of Abnormal and Social Psychology, 65(3), 145.

Daniels J. Daniels’ Running Formula (2013). 3nd ed. Hanlon T, Marty C, Wolpert T, MacDonald P, editors. Mesa, Arizona: Human Kinetics Publishers, Inc; 320 p.

De Ruiter, C. J., Verdijk, P. W., Werker, W., Zuidema, M. J., & de Haan, A. (2013). Stride frequency in relation to oxygen consumption in experienced and novice runners. European journal of sport science, 14(3), 251-258.

De Ruiter, C. J., Van Daal, S., & Van Dieën, J. H. (2020). Individual optimal step frequency during outdoor running. European journal of sport science, 20(2), 182-190.

Dos Santos, A. F., Nakagawa, T. H., Nakashima, G. Y., Maciel, C. D., & Serrão, F. (2016). The effects of forefoot striking, increasing step rate, and forward trunk lean running on trunk and lower limb kinematics and com-fort. International journal of sports medicine, 37(5), 369-373.

Fletcher, J. R., Esau, S. P., & MacIntosh, B. R. (2009). Economy of running: beyond the measurement of oxygen uptake. Journal of Applied Physiology, 107(6), 1918-1922.

Garcia de Dionisio, S. F., Gómez-Carmona, C. D., Bastida-Castillo, A., Rojas-Valverde, D., & Pino-Ortega, J. (2020). Slope influence on the trail runner's physical load: a case study. Revista internacional de medicina y ciencias de la actividad física y del deporte, 20(80), 641-658.

Heiderscheit, B. C., Chumanov, E. S., Michalski, M. P., Wille, C. M., & Ryan, M. B. (2011). Effects of step rate ma-nipulation on joint mechanics during running. Medicine and science in sports and exercise, 43(2), 296.

Hobara, H., Kanosue, K., & Suzuki, S. (2007). Changes in muscle activity with increase in leg stiffness during hop-ping. Neuroscience letters, 418(1), 55-59.

Hobara, H., Sato, T., Sakaguchi, M., & Nakazawa, K. (2012). Step frequency and lower extremity loading during running. International journal of sports medicine, 33(04), 310-313.

Hunter, I., & Smith, G. A. (2007). Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. European journal of applied physiology, 100(6), 653-661.

Hunter, I., Lee, K., Ward, J., & Tracy, J. (2017). Self-optimization of stride length among experienced and inexperi-enced runners. International journal of exercise science, 10(3), 446.

Hopkins, W., Marshall, S., Batterham, A., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine and Science in Sports and Exercise, 41(1), 3.

Lee, D. C., Brellenthin, A. G., Thompson, P. D., Sui, X., Lee, I. M., & Lavie, C. J. (2017). Running as a key lifestyle medicine for longevity. Progress in cardiovascular diseases, 60(1), 45-55.

Lenhart, R. L., Thelen, D. G., Wille, C. M., Chumanov, E. S., & Heiderscheit, B. C. (2014). Increasing running step rate reduces patellofemoral joint forces. Medicine and science in sports and exercise, 46(3), 557.

Lieberman, D. E., Warrener, A. G., Wang, J., & Castillo, E. R. (2015). Effects of stride frequency and foot position at landing on braking force, hip torque, impact peak force and the metabolic cost of running in humans. Journal of Ex-perimental Biology, 218(21), 3406-3414.

Mercer, J., Dolgan, J., Griffin, J., & Bestwick, A. (2008). The physiological importance of preferred stride frequency during running at different speeds. Journal of Exercise Physiology Online, 11(3).

Moore, I. S., Ashford, K. J., Cross, C., Hope, J., Jones, H. S., & McCarthy-Ryan, M. (2019). Humans optimize ground contact time and leg stiffness to minimize the metabolic cost of running. Frontiers in sports and active living, 1, 53.

Noehren, B., Scholz, J., & Davis, I. (2011). The effect of real-time gait retraining on hip kinematics, pain and function in subjects with patellofemoral pain syndrome. British journal of sports medicine, 45(9), 691-696.

Nummela, A., Keränen, T., & Mikkelsson, L. O. (2007). Factors related to top running speed and economy. Interna-tional journal of sports medicine, 28(08), 655-661.

Patoz, A., Lussiana, T., Gindre, C., & Mourot, L. (2020). Predicting temporal gait kinematics: anthropometric char-acteristics and global running pattern matter. Frontiers in Physiology, 11.

Quinn, T. J., Dempsey, S. L., LaRoche, D. P., Mackenzie, A. M., & Cook, S. B. (2019). Step frequency training im-proves running economy in well-trained female runners. J Strength and Cond Research.

Santos-Concejero, J., Domínguez, C. G., de Letona, I. B. L., Lili, J. Z., Astiazaran, J. I., & Orozko, S. M. G. (2013). Comienzo de la acumulación de lactato sanguíneo como predictor del rendimiento en atletas de élite. Retos: nuevas tendencias en educación física, deporte y recreación, (23), 67-69.

Schubert, A. G., Kempf, J., & Heiderscheit, B. C. (2014). Influence of stride frequency and length on running mechan-ics: a systematic review. Sports health, 6(3), 210-217.

Shaw, A. J., Ingham, S. A., & Folland, J. P. (2014). The valid measurement of running economy in runners. Medicine and science in sports and exercise, 46(10), 1968-1973.

Snyder, K. L., & Farley, C. T. (2011). Energetically optimal stride frequency in running: the effects of incline and de-cline. Journal of Experimental Biology, 214(12), 2089-2095.

Snyder, K. L., Snaterse, M., & Donelan, J. M. (2012). Running perturbations reveal general strategies for step fre-quency selection. Journal of applied physiology, 112(8), 1239-1247.

Soidán, J. L. G., & Giráldez, V. A. (2003). Análisis de las lesiones más frecuentes en pruebas de velocidad, medio fondo y fondo. Revista Internacional de Medicina y Ciencias de la Actividad Física y del Deporte, 3(12), 5.

van Oeveren, B. T., De Ruiter, C. J., Beek, P. J., & Van Dieën, J. H. (2017). Optimal stride frequencies in running at different speeds. PloS one, 12(10), e0184273.

van Oeveren, B. T., De Ruiter, C. J., Hoozemans, M. J. M., Beek, P. J., & Van Dieën, J. H. (2019). Inter-individual differences in stride frequencies during running obtained from wearable data. Journal of sports sciences, 37(17), 1996-2006.

Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of applied physiology, 89(5), 1991-1999.

Witte, T. H., & Wilson, A. M. (2004). Accuracy of non-differential GPS for the determination of speed over ground. Journal of biomechanics, 37(12), 1891-1898.

Descargas

Publicado

2024-08-03

Cómo citar

Miqueleiz, U., Cabello-Olmo, M., & Aguado-Jimenez, R. (2024). Frecuencia de zancada durante la carrera de resistencia en tapiz rodante y al aire libre (Stride frequency patterns during both treadmill and outdoor running in endurance runners). Retos, 57, 131–136. https://doi.org/10.47197/retos.v57.104569

Número

Sección

Artículos de carácter científico: investigaciones básicas y/o aplicadas