Efectos agudos del ejercicio de intensidad moderada y constante sobre los niveles circulantes de factor de crecimiento de fibroblastos 21, resistina y adiponectina de adultos jóvenes inactivos físicamente (Acute effects of moderate-intensity constant training on circulatory fibroblast growth factor 21, resis-tin, and adiponectin of physically inactive young adults)

Autores/as

  • Jeremías Carrasco-Molina School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
  • Giannina Iuspa-Santelices School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
  • Francisca Flores-Ojeda School of Physical Therapy, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
  • Matías Ruíz-Uribe Cardiorespiratory and Metabolic Function Laboratory – Neyün, Universidad Austral de Chile, Valdivia, Chile https://orcid.org/0009-0000-1535-0247
  • Sergio Francisco Martínez Huenchullán Universidad San Sebastián https://orcid.org/0000-0002-6336-5571

DOI:

https://doi.org/10.47197/retos.v55.103732

Palabras clave:

Ejercicio, Comportamiento sedentario, Síndrome metabólico, Entrenamiento de resistencia, Citoquinas

Resumen

Introducción: la inactividad física afecta a la salud metabólica mientras que se ha observado que el ejercicio revierte estas alteraciones. El factor de crecimiento de fibroblastos (FGF) 21, la resistina y la adiponectina son citoquinas que se ven afectadas por la inactividad física y el ejercicio, sin embargo, su respuesta aguda al ejercicio en adultos jóvenes físicamente inactivos es desconocida. Por tanto, este estudio tuvo por objetivo investigar los efectos de una sesión de ejercicio de intensidad moderada y continua (MICT) sobre el FGF21, resistina y adiponectina circulante en ellos. Material y métodos: estudio cuasi-experimental donde 20 adultos jóvenes físicamente inactivos con índices de masa corporal entre 18 y 30 kg/m2 fueron reclutados. Se realizó una sesión de MICT a una intensidad del 60% de su frecuencia cardiaca de reserva por 30 minutos. Se midieron el peso, talla, circunferencias de cintura y cadera, y porcentajes de masa adiposa y muscular antes del ejercicio, y se tomaron muestras de sangre venosa antes y después del ejercicio, donde se valoró la glicemia, insulinemia, perfiles lipídicos, transaminasas, FGF21, resistina y adiponectina. Resultados: después del ejercicio disminuyeron los niveles circulantes de insulina (mediana 23.5 vs 10.9 µUI/ml; p<0.05) y FGF21 (mediana 527 vs 409 pg/ml; p<0.05). Mientras que no se observaron cambios en los niveles de resistina y adiponectina (ambos p>0.05). Conclusión: Una sesión de MICT disminuye los niveles sanguíneos de FGF21, sin modificar las concentraciones de resistina y adiponectina. Los mecanismos detrás de estos cambios necesitan ser investigados en futuros estudios.

Palabras claves: ejercicio, comportamiento sedentario, síndrome metabólico, entrenamiento de resistencia, citoquinas.

Abstract. Introduction: physical inactivity affects metabolic health, and it has been described that physical exercise is able to counter these disturbances. Fibroblast growth factor (FGF) 21, resistin, and adiponectin are known cytokines that are sensitive to physical inactivity and exercise, however, their acute behaviour after one session of exercise in physically inactive young adults is unclear. Therefore, this study aimed to investigate the effects of a session of moderate-intensity continuous training (MICT) on the circulatory levels of FGF21, resistin, and adiponectin of physically inactive young adults. Material and methods: quasi-experimental study, where 20 physically inactive young adults, with body mass indexes between 18 and 30 kg/m2 were included. All performed one MICT session, with an intensity of 60% of their heart rate reserve on a treadmill for 30 minutes. Anthropometric measurements were evaluated (weight, height, waist and hip circumferences, lean and fat mass) prior to exercise, and venous blood samples were taken before and after exercise, where glycemia, insulin, lipid profiles, transaminases, FGF21, resistin, and adiponectin were assessed. Results: one MICT session decreased the circulatory levels of insulin (median 23.5 vs 10.9 µUI/ml; p<0.05) and FGF21 (median 527 vs 409 pg/ml; p<0.05). On the other hand, resistin and adiponectin levels did not change after exercise (both p>0.05). Conclusion: one MICT session decreased FGF21 plasma levels, whereas it did not modify resistin and adiponectin circulatory levels. The specific mechanisms behind this different behavior are needed to be elucidated in future studies.

Keywords: exercise, sedentary behavior, metabolic syndrome, endurance training, cytokines.

Citas

Balboa-Castillo, T., Munoz, S., Seron, P., Andrade-Mayorga, O., Lavados-Romo, P., & Aguilar-Farias, N. (2023). Validity and reliability of the international physical activity questionnaire short form in Chilean adults. PLoS One, 18(10), e0291604. doi: https://doi.org/10.1371/journal.pone.0291604

Barroso, L. S. S., Faria, M. H. S., Souza-Gomes, A. F., Barros, J., Kakehasi, A. M., Vieira, E. L. M., . . . Nunes-Silva, A. (2023). Acute and Chronic Effects of Strength Training on Plasma Levels of Adipokines in Man. Int J Sports Med, 44(10), 751-758. doi: https://doi.org/10.1055/a-2079-1607

Becic, T., Studenik, C., & Hoffmann, G. (2018). Exercise Increases Adiponectin and Reduces Leptin Levels in Prediabetic and Diabetic Individuals: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Med Sci (Basel), 6(4). doi: https://doi.org/10.3390/medsci6040097

Chow, L. S., Gerszten, R. E., Taylor, J. M., Pedersen, B. K., van Praag, H., Trappe, S., . . . Snyder, M. P. (2022). Exerkines in health, resilience and disease. Nat Rev Endocrinol, 18(5), 273-289. doi: https://doi.org/10.1038/s41574-022-00641-2

Collados-Gutiérrez, A., & Gutiérrez Vilahú, L. (2023). Efectiveness of High Intensity Interval Training versus Moderate Intensity Continuous Training in patients with chronic heart failure with reduced ejection fraction, in relation to aerobic capacity, left ventricular ejection fraction and quality of life. Systematic review. Retos, 49, 135-145. doi: https://doi.org/10.47197/retos.v49.93944

Cuevas-Ramos, D., Almeda-Valdes, P., Meza-Arana, C. E., Brito-Cordova, G., Gomez-Perez, F. J., Mehta, R., . . . Aguilar-Salinas, C. A. (2012). Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One, 7(5), e38022. doi: https://doi.org/10.1371/journal.pone.0038022

Del Cristo Rodriguez Perez, M., Gonzalez, D. A., Rodriguez, I. M., Coello, S. D., Fernandez, F. J. C., Diaz, B. B., & de Leon, A. C. (2022). Resistin as a risk factor for all-cause (and cardiovascular) death in the general population. Sci Rep, 12(1), 19627. doi: https://doi.org/10.1038/s41598-022-24039-2

Downes, L. (2015). Physical Activity and Dietary Habits of College Students. The Journal for Nurse Practitioners, 11(2), 192-198.e192. doi: https://doi.org/10.1016/j.nurpra.2014.11.015

Farhani, F., Baker, J., Amni, H., Martínez Huenchullán, S. F., Alijani, E., & Azhir, S. (2022). Effects of exercise intensity on soleus muscle myostatin and follistatin levels of hyperglycaemic rats. Retos, 44, 889-905. doi: https://doi.org/10.47197/retos.v44i0.91770

Fisher, F. M., Chui, P. C., Antonellis, P. J., Bina, H. A., Kharitonenkov, A., Flier, J. S., & Maratos-Flier, E. (2010). Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes, 59(11), 2781-2789. doi: https://doi.org/10.2337/db10-0193

Fortes, Y., Souza-Gomes, A., Moreira, A., Campos, L., de Moura, S., Barroso, L., . . . Nunes-Silva, A. (2023). A single session of strength training changed plasma levels of resistin, but not leptin in overweight and obese men. Sports Medicine and Health Science. doi: https://doi.org/10.1016/j.smhs.2023.12.001

Garneau, L., Parsons, S. A., Smith, S. R., Mulvihill, E. E., Sparks, L. M., & Aguer, C. (2020). Plasma Myokine Concentrations After Acute Exercise in Non-obese and Obese Sedentary Women. Front Physiol, 11, 18. doi: https://doi.org/10.3389/fphys.2020.00018

Geng, L., Liao, B., Jin, L., Huang, Z., Triggle, C. R., Ding, H., . . . Xu, A. (2019). Exercise Alleviates Obesity-Induced Metabolic Dysfunction via Enhancing FGF21 Sensitivity in Adipose Tissues. Cell Rep, 26(10), 2738-2752 e2734. doi: https://doi.org/10.1016/j.celrep.2019.02.014

González-Zapata, L., Carreño-Aguirre, C., Estrada, A., Monsalve, J., & Álvarez, L. (2017). Exceso de peso corporal en estudiantes universitarios según variables sociodemográficas y estilos de vida. Rev Chil Nutr, 44(3), 251-261. doi: https://doi.org/10.4067/s0717-75182017000300251

Hamer, M., Sabia, S., Batty, G. D., Shipley, M. J., Tabak, A. G., Singh-Manoux, A., & Kivimaki, M. (2012). Physical activity and inflammatory markers over 10 years: follow-up in men and women from the Whitehall II cohort study. Circulation, 126(8), 928-933. doi: https://doi.org/10.1161/CIRCULATIONAHA.112.103879

Jamurtas, A. Z., Theocharis, V., Koukoulis, G., Stakias, N., Fatouros, I. G., Kouretas, D., & Koutedakis, Y. (2006). The effects of acute exercise on serum adiponectin and resistin levels and their relation to insulin sensitivity in overweight males. Eur J Appl Physiol, 97(1), 122-126. doi: https://doi.org/10.1007/s00421-006-0169-x

Kadoglou, N. P., Perrea, D., Iliadis, F., Angelopoulou, N., Liapis, C., & Alevizos, M. (2007). Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes. Diabetes Care, 30(3), 719-721. doi: https://doi.org/10.2337/dc06-1149

Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K., & Tobe, K. (2006). Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest, 116(7), 1784-1792. doi: https://doi.org/10.1172/JCI29126

Kharitonenkov, A., & Adams, A. C. (2014). Inventing new medicines: The FGF21 story. Mol Metab, 3(3), 221-229. doi: https://doi.org/10.1016/j.molmet.2013.12.003

Kondo, T., Kobayashi, I., & Murakami, M. (2006). Effect of exercise on circulating adipokine levels in obese young women. Endocr J, 53(2), 189-195. doi: https://doi.org/10.1507/endocrj.53.189

Lim, K., & Kim, K. (2020). Role of Exercise-induced Adiponectin Activation on Obese and Diabetic Individuals. Exercise Science, 29(3), 208-213. doi: https://doi.org/10.15857/ksep.2020.29.3.208

Martinez-Huenchullan, S. F., Ban, L. A., Olaya-Agudo, L. F., Maharjan, B. R., Williams, P. F., Tam, C. S., . . . Twigg, S. M. (2019). Constant-Moderate and High-Intensity Interval Training Have Differential Benefits on Insulin Sensitive Tissues in High-Fat Fed Mice. Front Physiol, 10, 459. doi: https://doi.org/10.3389/fphys.2019.00459

Martinez-Huenchullan, S. F., Tam, C. S., Ban, L. A., Ehrenfeld-Slater, P., McLennan, S. V., & Twigg, S. M. (2020). Skeletal muscle adiponectin induction in obesity and exercise. Metabolism, 102, 154008. doi: https://doi.org/10.1016/j.metabol.2019.154008

Nikitara, K., Odani, S., Demenagas, N., Rachiotis, G., Symvoulakis, E., & Vardavas, C. (2021). Prevalence and correlates of physical inactivity in adults across 28 European countries. Eur J Public Health, 31(4), 840-845. doi: https://doi.org/10.1093/eurpub/ckab067

Pedersen, B. K. (2019). The Physiology of Optimizing Health with a Focus on Exercise as Medicine. Annu Rev Physiol, 81, 607-627. doi: https://doi.org/10.1146/annurev-physiol-020518-114339

Peppler, W. T., Anderson, Z. G., MacRae, L. M., MacPherson, R. E. K., & Wright, D. C. (2017). Habitual physical activity protects against lipopolysaccharide-induced inflammation in mouse adipose tissue. Adipocyte, 6(1), 1-11. doi: https://doi.org/10.1080/21623945.2016.1259778

Porflitt-Rodriguez, M., Guzman-Arriagada, V., Sandoval-Valderrama, R., Tam, C. S., Pavicic, F., Ehrenfeld, P., & Martinez-Huenchullan, S. (2022). Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. Metabolism, 129, 155137. doi: https://doi.org/10.1016/j.metabol.2022.155137

Rachwalik, M., Hurkacz, M., Sienkiewicz-Oleszkiewicz, B., & Jasinski, M. (2021). Role of resistin in cardiovascular diseases: Implications for prevention and treatment. Adv Clin Exp Med, 30(8), 865-874. doi: https://doi.org/10.17219/acem/135978

Sabaratnam, R., Pedersen, A. J. T., Kristensen, J. M., Handberg, A., Wojtaszewski, J. F. P., & Hojlund, K. (2018). Intact regulation of muscle expression and circulating levels of myokines in response to exercise in patients with type 2 diabetes. Physiol Rep, 6(12), e13723. doi: https://doi.org/10.14814/phy2.13723

Sargeant, J. A., Aithal, G. P., Takamura, T., Misu, H., Takayama, H., Douglas, J. A., . . . King, J. A. (2018). The influence of adiposity and acute exercise on circulating hepatokines in normal-weight and overweight/obese men. Appl Physiol Nutr Metab, 43(5), 482-490. doi: https://doi.org/10.1139/apnm-2017-0639

Sari, D. R., Ramadhan, R. N., Agustin, D., Munir, M., Izzatunnisa, N., Susanto, J., . . . Rejeki, P. S. (2023). The Effect of Exercise Intensity on Anthropometric Parameters and Renal Damage in High Fructose- Induced Mice. Retos, 51, 1194-1209. doi: https://doi.org/10.47197/retos.v51.101189

Siddiqui, K., Scaria Joy, S., & George, T. (2020). Circulating resistin levels in relation with insulin resistance, inflammatory and endothelial dysfunction markers in patients with type 2 diabetes and impaired fasting glucose. Endocrine and Metabolic Science, 1(3-4). doi: https://doi.org/10.1016/j.endmts.2020.100059

Slusher, A. L., Whitehurst, M., Zoeller, R. F., Mock, J. T., Maharaj, M., & Huang, C. J. (2015). Attenuated fibroblast growth factor 21 response to acute aerobic exercise in obese individuals. Nutr Metab Cardiovasc Dis, 25(9), 839-845. doi: https://doi.org/10.1016/j.numecd.2015.06.002

Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., . . . Lazar, M. A. (2001). The hormone resistin links obesity to diabetes. Nature, 409(6818), 307-312. doi: https://doi.org/10.1038/35053000

Vranic, M., Gauthier, C., Bilinski, D., Wasserman, D., El Tayeb, K., Hetenyi, G., Jr., & Lickley, H. L. (1984). Catecholamine responses and their interactions with other glucoregulatory hormones. Am J Physiol, 247(2 Pt 1), E145-156. doi: https://doi.org/10.1152/ajpendo.1984.247.2.E145

Warburton, D. E., Gledhill, N., Jamnik, V. K., Bredin, S. S., McKenzie, D. C., Stone, J., . . . Shephard, R. J. (2011). Evidence-based risk assessment and recommendations for physical activity clearance: Consensus Document 2011. Appl Physiol Nutr Metab, 36 Suppl 1, S266-298. doi: https://doi.org/10.1139/h11-062

WHO. (2022). Global status report on physical activity 2022. Retrieved from https://www.who.int/publications/i/item/9789240059153

Xiong, Y., Chen, Y., Liu, Y., & Zhang, B. (2020). Moderate-Intensity Continuous Training Improves FGF21 and KLB Expression in Obese Mice. Biochemistry (Mosc), 85(8), 938-946. doi: https://doi.org/10.1134/S000629792008009X

Yang, W. S., Lee, W. J., Funahashi, T., Tanaka, S., Matsuzawa, Y., Chao, C. L., . . . Chuang, L. M. (2002). Plasma adiponectin levels in overweight and obese Asians. Obes Res, 10(11), 1104-1110. doi: https://doi.org/10.1038/oby.2002.150

Descargas

Publicado

2024-04-09

Cómo citar

Carrasco-Molina, J., Iuspa-Santelices, G., Flores-Ojeda, F., Ruíz-Uribe, M., & Martínez-Huenchullán, S. F. (2024). Efectos agudos del ejercicio de intensidad moderada y constante sobre los niveles circulantes de factor de crecimiento de fibroblastos 21, resistina y adiponectina de adultos jóvenes inactivos físicamente (Acute effects of moderate-intensity constant training on circulatory fibroblast growth factor 21, resis-tin, and adiponectin of physically inactive young adults). Retos, 55, 379–385. https://doi.org/10.47197/retos.v55.103732

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas