Tecnologías basadas en la web en la educación física de la escuela secundaria (Web-Based Technologies in Middle School Physical Education)
DOI:
https://doi.org/10.47197/retos.v51.100310Palabras clave:
rendimiento académico; actividad física; comportamiento sedentario; competencia docenteResumen
El aspecto clave discutido en este artículo es la efectividad de introducir tecnologías digitales y basadas en la web en la educación física de la escuela secundaria en la actualidad. Se lanzó un curso experimental de formación basado en tecnología digital en cuatro escuelas de educación integral en la República de Kazajistán. Esto implicó el uso de acelerómetros durante las lecciones, así como la plataforma de redes sociales Facebook para intercambiar información relacionada con la materia. Se midió la actividad física de los estudiantes durante cada lección de educación física a lo largo del semestre (que comprendía un total de 50 sesiones). La muestra total de estudiantes consistió en 338 estudiantes (191 chicas y 147 chicos), con una edad promedio de los participantes de 13.2 ± 1.05 años. En la etapa inicial del estudio y después del curso, los estudiantes se sometieron a una serie de pruebas de aptitud física, como correr 60 metros, saltos largos, lanzamiento de pelota y dominadas. Después de eso, completaron un Cuestionario de Estrategias Motivadas para el Aprendizaje. Los resultados han demostrado que la incorporación de tecnologías digitales aumentó la actividad física de los estudiantes. Si antes de la intervención, la actividad física de los estudiantes durante la lección, en promedio en toda la muestra (n=338), correspondía a una actividad física ligera, entonces después de la intervención, cambió a una actividad física moderada a vigorosa. Además, se ha documentado una mejora significativa en el rendimiento académico y la motivación. Los hallazgos de este estudio son de gran importancia para todos los profesores de educación física que están involucrados en la introducción de nuevas tecnologías en el proceso educativo, así como para otros representantes del campo educativo.
Palabras clave: rendimiento académico; actividad física; motivación; acelerómetro; redes sociales; comportamiento sedentario.
Abstract. The key aspect discussed in this article is the effectiveness of introducing digital and web-based technologies into present-day middle school physical education. An experimental digital technology-based training course was launched in four comprehensive educational schools in the Republic of Kazakhstan. It involved the use of accelerometers during lessons as well as the Facebook social media platform for exchanging subject-related information. The student’s physical activity was measured during each physical education lesson throughout the semester (comprising a total of 50 sessions). The total student sample consisted of 338 students (191 girls and 147 boys), with the mean age of participants being 13.2 ± 1.05 years. At the baseline stage of the study and after the course, the students underwent a series of physical fitness tests, such as running a 60-meter sprint, long jumps, ball throwing, and pull-ups. Following that, they took a Motivated Strategies for Learning Questionnaire. The results have shown that the incorporation of digital technologies increased students' physical activity. If before the intervention, the physical activity of the students during the lesson, on average across the sample (n=338), corresponded to light physical activity, then after the intervention, it shifted to moderate-to-vigorous physical activity. Furthermore, a significant enhancement in academic performance and motivation has been documented. The findings of this study are of great importance to all physical education teachers who are involved in the introduction of new technologies in the educational process, as well as to other representatives of the educational field.
Keywords: academic performance; physical activity; motivation; accelerometer; social media; sedentary behaviour.
Citas
Al Ayubi, S. U., Parmanto, B., Branch, R., & Ding, D. (2014). A persuasive and social mHealth application for physical activity: A usability and feasibility study. JMIR mHealth and uHealth, 2(2), e2902. https://doi.org/10.2196/mhealth.2902
Awidi, I. T., Paynter, M., & Vujosevic, T. (2019). Facebook group in the learning design of a higher education course: An analysis of factors influencing positive learning experience for students. Computers & Education, 129, 106–121. https://doi.org/10.1016/j.compedu.2018.10.018
Cain, M. K., Zhang, Z., & Yuan, K. H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnor-mality: Prevalence, influence and estimation. Behavior Research Methods, 49, 1716–1735. https://doi.org/10.3758/s13428-016-0814-1
Calderón, A., Meroño, L., & MacPhail, A. (2020). A student-centred digital technology approach: The relationship between intrinsic motivation, learning climate and academic achievement of physical education pre-service teachers. European Physical Education Review, 26(1), 241–262. https://doi.org/10.1177/1356336X19850852
Carroll, J. K., Moorhead, A., Bond, R., LeBlanc, W. G., Petrella, R. J., & Fiscella, K. (2017). Who uses mobile phone health apps and does use matter? A secondary data analytics approach. Journal of Medical Internet Research, 19(4), e125. https://doi.org/10.2196/jmir.5604
Catucci, A., Scognamiglio, U., & Rossi, L. (2021). Lifestyle changes related to eating habits, physical activity, and weight status during COVID-19 quarantine in Italy and some European countries. Frontiers in Nutrition, 8, 718877. https://doi.org/10.3389/fnut.2021.718877
Chen, L., Li, J., Xia, T., Matthews, T. A., Tseng, T. S., Shi, L., Zhang, D., Chen, Z., Han, X., Li, Y., Li, H., Wen, M., & Su, D. (2021). Changes of exercise, screen time, fast food consumption, alcohol, and cigarette smoking during the COVID-19 pandemic among adults in the United States. Nutrients, 13(10), 3359. https://doi.org/10.3390/nu13103359
Degoy, E., & Olmos, R. (2020). Reciprocal relation between health and academic performance in children through auto-regressive models. School Psychology, 35(5), 332–342. https://doi.org/10.1037/spq0000409
Divine, A., Watson, P. M., Baker, S., & Hall, C. R. (2019). Facebook, relatedness and exercise motivation in university students: A mixed methods investigation. Computers in Human Behavior, 91, 138–150. https://doi.org/10.1016/j.chb.2018.09.037
Evenson, K. R., Catellier, D. J., Gill, K., Ondrak, K. S., & McMurray, R. G. (2008). Calibration of two objective measures of physical activity for children. Journal of Sports Sciences, 26(14), 1557–1565. https://doi.org/10.1080/02640410802334196
Fanning, J., Roberts, S., Hillman, C. H., Mullen, S. P., Ritterband, L., & McAuley, E. (2017). A smartphone “app”-delivered randomized factorial trial targeting physical activity in adults. Journal of Behavioral Medicine, 40, 712–729. https://doi.org/10.1007/s10865-017-9838-y
Farooq, A., Martin, A., Janssen, X., Wilson, M. G., Gibson, A. M., Hughes, A., & Reilly, J. J. (2020). Longitudinal changes in moderate‐to‐vigorous‐intensity physical activity in children and adolescents: A systematic review and meta‐analysis. Obesity Reviews, 21(1), e12953. https://doi.org/10.1111/obr.12953
Goad, T., Towner, B., Jones, E., & Bulger, S. (2019). Instructional tools for online physical education: Using mobile tech-nologies to enhance learning. Journal of Physical Education, Recreation & Dance, 90(6), 40–47. https://doi.org/10.1080/07303084.2019.1614118
Krivsun, S. (2011). Formation of professional basic competencies of a PE teacher. Dissertation. Southern Federal University.
Lee, J. E., & Gao, Z. (2020). Effects of the iPad and mobile application-integrated physical education on children’s physical activity and psychosocial beliefs. Physical Education and Sport Pedagogy, 25(6), 567–584. https://doi.org/10.1080/17408989.2020.1761953
Lin, Y. N., Hsia, L. H., & Hwang, G. J. (2022). Fostering motor skills in physical education: A mobile technology-supported ICRA flipped learning model. Computers & Education, 177, 104380. https://doi.org/10.1016/j.compedu.2021.104380
Nur, L., Yulianto, A., Suryana, D., Malik, A. A., Ardha, M. A. A., & Hong, F. (2022). An analysis of the distribution map of physical education learning motivation through Rasch modeling in elementary school. International Journal of Instruc-tion, 15(2), 815–830. https://doi.org/10.29333/iji.2022.15244a
Palao, J. M., Hastie, P. A., Cruz, P. G., & Ortega, E. (2015). The impact of video technology on student performance in physical education. Technology, Pedagogy and Education, 24(1), 51–63. https://doi.org/10.1080/1475939X.2013.813404
Paterson, D. C., Ramage, K., Moore, S. A., Riazi, N., Tremblay, M. S., & Faulkner, G. (2021). Exploring the impact of COVID-19 on the movement behaviors of children and youth: A scoping review of evidence after the first year. Journal of Sport and Health Science, 10(6), 675–689. https://doi.org/10.1016/j.jshs.2021.07.001
Petersen, J. M., Prichard, I., & Kemps, E. (2019). A comparison of physical activity mobile apps with and without existing web-based social networking platforms: Systematic review. Journal of Medical Internet Research, 21(8), e12687. https://doi.org/10.2196/12687
Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ). National Center for Research to Improve Postsecondary Teaching and Learning.
Rúa-Alonso, M., Rial-Vázquez, J., Nine, I., Lete-Lasa, J. R., Clavel, I., Giráldez-García, M. A., Rodríguez-Corral, M., Dopico-Calvo, X., & Iglesias-Soler, E. (2022). Comparison of physical fitness profiles obtained before and during COVID-19 pandemic in two independent large samples of children and adolescents: DAFIS project. International Journal of Environmental Research and Public Health, 19(7), 3963. https://doi.org/10.3390/ijerph19073963
Sallis, J. F. (1993). Epidemiology of physical activity and fitness in children and adolescents. Critical Reviews in Food Science and Nutrition, 33(4-5), 403–408. https://doi.org/10.1080/10408399309527639
Seah, M. L. C., & Koh, K. T. (2021). The efficacy of using mobile applications in changing adolescent girls’ physical activi-ty behaviour during weekends. European Physical Education Review, 27(1), 113–131. https://doi.org/10.1177/1356336X20930741
Sofias, T. A., & Pierrakeas, C. J. (2023). Student engagement and educational benefits of web GIS-based pro-jects. International Journal of Web-Based Learning and Teaching Technologies, 18(1), 1–16. https://doi.org/10.4018/IJWLTT.317089
Sullivan, G. M., & Feinn, R. (2012). Using effect size—or why the P value is not enough. Journal of Graduate Medical Educa-tion, 4(3), 279–282. https://doi.org/10.4300/JGME-D-12-00156.1
Torquati, L., Kolbe-Alexander, T., Pavey, T., & Leveritt, M. (2018). Changing diet and physical activity in nurses: A pilot study and process evaluation highlighting challenges in workplace health promotion. Journal of Nutrition Education and Behavior, 50(10), 1015–1025. https://doi.org/10.1016/j.jneb.2017.12.001
Vlahu-Gjorgievska, E., Burazor, A., Win, K. T., & Trajkovik, V. (2023). mHealth apps targeting obesity and overweight in young people: App review and analysis. JMIR mHealth and uHealth, 11, e37716. https://doi.org/10.2196/37716
Walsh, J. C., Corbett, T., Hogan, M., Duggan, J., & McNamara, A. (2016). An mHealth intervention using a smartphone app to increase walking behavior in young adults: A pilot study. JMIR mHealth and uHealth, 4(3), e5227. https://doi.org/10.2196/mhealth.5227
World Health Organization. (2019). Global action plan on physical activity 2018-2030: More active people for a healthier world. World Health Organization.
Wu, C. C., Chao, H. W., & Tsai, C. W. (2021). The effects of Facebook live-stream teaching on improving students' dance skills: Impacts on performance, learning motivation, and physical activity class satisfaction. International Journal of Mobile and Blended Learning, 13(4), 45–62. https://doi.org/10.4018/IJMBL.2021100103
Wyant, J., & Baek, J. H. (2019). Re-thinking technology adoption in physical education. Curriculum Studies in Health and Physical Education, 10(1), 3–17. https://doi.org/10.1080/25742981.2018.1514983
Yang, Q. F., Hwang, G. J., & Sung, H. Y. (2020). Trends and research issues of mobile learning studies in physical educa-tion: A review of academic journal publications. Interactive Learning Environments, 28(4), 419–437. https://doi.org/10.1080/10494820.2018.1533478
Yu, H., Kulinna, P. H., & Lorenz, K. A. (2018). An integration of mobile applications into physical education pro-grams. Strategies, 31(3), 13–19. https://doi.org/10.1080/08924562.2018.1442275
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess