Análisis de la Disposición Espacial de Contenido en entornos de Realidad Aumentada y su Efecto en la Carga Cognitiva de los Usuarios [Analysis of the Spatial Layout of Content in Augmented Reality Environments and its Effect on Users' Cognitive Load]
PDF (Español)
PDF (English)

Métricas alternativas

Métrica

Palabras clave

Augmented Reality
Cognitive Load
Mental Effort
Emerging Technologies
Cognitive Processing
Instructional Design realidad aumentada
carga cognitiva
esfuerzo mental
tecnologías emergentes
procesamiento cognitivo
diseño instruccional

Cómo citar

Bautista, L. E., Maradei, F., & Pedraza, G. (2024). Análisis de la Disposición Espacial de Contenido en entornos de Realidad Aumentada y su Efecto en la Carga Cognitiva de los Usuarios [Analysis of the Spatial Layout of Content in Augmented Reality Environments and its Effect on Users’ Cognitive Load]. Pixel-Bit. Revista De Medios Y Educación. https://doi.org/10.12795/pixelbit.109089

Resumen

La disposición espacial de los espacios de información en entornos de realidad aumentada (RA) juega un papel crucial en la modulación del esfuerzo mental de los usuarios. Este estudio tiene como objetivo investigar cómo la contigüidad y discontigüidad entre los objetos físicos y los espacios de información, tanto en el plano horizontal como en el vertical, afectan la carga cognitiva durante la interacción con contenido procedimental. Se realizaron cuatro experimentos diferenciados, midiendo la dilatación pupilar y la duración de las fijaciones como indicadores del esfuerzo mental. Estas medidas ofrecen una visión integral sobre la influencia de la disposición espacial. Los hallazgos se discuten dentro del marco de la literatura existente, contrastando los resultados obtenidos con estudios previos y proporcionando una base para futuras investigaciones en el diseño de materiales educativos y entornos de aprendizaje. Los resultados obtenidos a lo largo de los cuatro experimentos muestran que la disposición espacial de la información en entornos de RA afecta significativamente el esfuerzo mental de los participantes, medido a través de la dilatación pupilar y la duración de las fijaciones. Estas medidas son consistentes con literatura previa que indica que el aumento de la dilatación pupilar es un indicador de mayor esfuerzo mental.

https://doi.org/10.12795/pixelbit.109089
PDF (Español)
PDF (English)

Citas

Acosta, J. L. B., Navarro, S. M. B., Gesa, R. F., & Kinshuk, K. (2019). Framework for designing motivational augmented reality applications in vocational education and training. Australasian Journal of Educational Technology, 35(3). https://doi.org/10.14742/ajet.4182

Amir Alkodri, A. A., Harrizki, H., & Suharno, S. (2020). Penerapan algoritma surf pendeteksi objek pada augmented reality berbasis android. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 6(2), 240-249. https://doi.org/10.35957/JATISI.V6I2.217

Anderson, R., & Campbell, M. J. (2015). Accelerating skill acquisition in rowing using self-based observational learning and expert modelling during performance. International Journal of Sports Science & Coaching, 10(2-3), 425-437. https://doi.org/10.1260/1747-9541.10.2-3.425

Andrade-Lotero, L. A. (2012). Teoría de la carga cognitiva, diseño multimedia y aprendizaje: un estado del arte. Magis. Revista Internacional de Investigación en Educación, 5, 75-92.

Barnas, A. J., & Greenberg, A. S. (2019). Object-based attention shifts are driven by target location, not object placement. Visual Cognition, 27(9-10), 768-791. https://doi.org/10.1080/13506285.2019.168058

Bautista, L. E., Guerrero, J., & Plata, C. (2022). Multimedia principles applied to a virtual reality application design for procedural learning. Avances en Interacción Humano-Computadora, 7(1), 9-12. https://doi.org/10.47756/aihc.y7i1.119

Beege, M., Wirzberger, M., Nebel, S., Schneider, S., Schmidt, N., & Rey, G. D. (2019, August). Spatial continuity effect vs. spatial contiguity failure. Revising the effects of spatial proximity between related and unrelated representations. Frontiers in Education, 4. https://doi.org/10.3389/feduc.2019.00086

Bertrand, J., Bhargava, A., Madathil, K. C., Gramopadhye, A., & Babu, S. V. (2017). The effects of presentation method and simulation fidelity on psychomotor education in a bimanual metrology training simulation. In 2017 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 59-68). IEEE. https://doi.org/10.1109/3DUI.2017.7893318

Brunken, R., Plass, J. L., Leutner, D., Brünken, R., & Plass, J. L. (2016). Direct measurement of cognitive load in multimedia learning. Educational Psychology, 1520(July), 37-41. https://doi.org/10.1207/S15326985EP3801

Cammeraat, S., Rop, G., & de Koning, B. B. (2020). The influence of spatial distance and signaling on the split-attention effect. Computers in Human Behavior, 105, 106203. https://doi.org/10.1016/j.chb.2019.106203

Çeken, B., & Taşkın, N. (2022). Multimedia learning principles in different learning environments: a systematic review. Smart Learning Environments, 9(1), 19. https://doi.org/10.1186/s40561-022-00200-2

Cheng, T., Lu, Y., & Yang, C. (2015). Using the multi-display teaching system to lower cognitive load. International Journal of Human-Computer Interaction, 18, 128-140. http://www.jstor.org/stable/jeductechsoci.18.4.128

Chikha, A. B., Khacharem, A., Trabelsi, K., & Bragazzi, N. L. (2021). The effect of spatial ability in learning from static and dynamic visualizations: a moderation analysis in 6-year-old children. Frontiers in Psychology, 12, 583968. https://doi.org/10.3389/fpsyg.2021.583968

Chow, H. (2021). Augmented reality using vixassist and hololens 2 for automotive service and maintenance. XR Case Studies: Using Augmented Reality and Virtual Reality Technology in Business, 59-66. https://doi.org/10.1007/978-3-030-72781-9_8

Craig, S. D., Twyford, J., Irigoyen, N., & Zipp, S. A. (2015). A test of spatial contiguity for virtual human’s gestures in multimedia learning environments. Journal of Educational Computing Research, 53(1), 3-14. https://doi.org/10.1177/0735633115585927

Czok, V., Krug, M., Müller, S., Huwer, J., Kruse, S., Müller, W., & Weitzel, H. (2023). A framework for analysis and development of augmented reality applications in science and engineering teaching. Education Sciences, 13(9), 926. https://doi.org/10.3390/educsci13090926

Danielsson, O., Holm, M., & Syberfeldt, A. (2020). Augmented reality smart glasses in industrial assembly: current status and future challenges. Journal of Industrial Information Integration, 20, 100175. https://doi.org/10.1016/j.jii.2020.100175

de Koning, B. B., Rop, G., & Paas, F. (2020). Effects of spatial distance on the effectiveness of mental and physical integration strategies in learning from split-attention examples. Computers in Human Behavior, 110, 106379. https://doi.org/10.1016/j.chb.2020.106379

de Nooijer, J. A., Van Gog, T., Paas, F., & Zwaan, R. A. (2013). When left is not right: handedness effects on learning object-manipulation words using pictures with left-or right-handed first-person perspectives. Psychological Science, 24(12), 2515-2521. https://doi.org/10.1177/0956797613498908

Doolani, S., Wessels, C., Kanal, V., Sevastopoulos, C., Jaiswal, A., Nambiappan, H., & Makedon, F. (2020). A review of extended reality (xr) technologies for manufacturing training. Technologies, 8(4), 77. https://doi.org/10.3390/technologies8040077

Drouot, M., Le Bigot, N., Bricard, E., De Bougrenet, J. L., & Nourrit, V. (2022). Augmented reality on industrial assembly line: Impact on effectiveness and mental workload. Applied Ergonomics, 103, 103793. https://doi.org/10.1016/j.apergo.2022.103793

Einhäuser, W., Atzert, C., & Nuthmann, A. (2020). Fixation durations in natural scene viewing are guided by peripheral scene content. Journal of vision, 20(4), 15-15. https://doi.org/10.1167/JOV.20.4.15

Ens, B., Finnegan, R., & Irani, P. (2014). The personal cockpit: a spatial interface for effective task switching on head-worn displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 3171-3180). ACM. https://doi.org/10.1145/2556288.2557058

Evans, A., Shevlin, S., Laurent, D. B. S., Bowness, J., Kearns, R. J., & MacFarlane, A. (2023). Pilot study exploring if an augmented reality needletrainer device improves novice performance of a simulated central venous catheter insertion on a phantom. Cureus, 15(6). https://doi.org/10.7759/cureus.40197

Evans, G., Miller, J., Iglesias Pena, M., MacAllister, A., & Winer, E. (2017). Evaluating the Microsoft HoloLens through an augmented reality assembly application. SPIE, 101970V. https://doi.org/10.1117/12.2262626

Franklin, M. S., Broadway, J. M., Mrazek, M. D., Smallwood, J., & Schooler, J. W. (2013). Window to the wandering mind: pupillometry of spontaneous thought while reading. Quarterly Journal of Experimental Psychology, 66(12), 2289-2294. https://doi.org/10.1080/17470218.2013.858170

Garzón, J., & Acevedo, J. (2019). Meta-analysis of the impact of augmented reality on students’ learning gains. Educational Research Review, 27, 244-260. https://doi.org/10.1016/j.edurev.2019.04.001

Geng, X., & Yamada, M. (2020). The effects of augmented reality on learning performance and cognitive load using the spatial continuity principle. International Association for Development of the Information Society. https://doi.org/10.33965/celda2020_202014l030

Guntur, M. I. S., Setyaningrum, W., & Retnawati, H. (2020, July). Can augmented reality improve problem-solving and spatial skill?. Journal of Physics: Conference Series 1581(1). https://doi.org/10.1088/1742-6596/1581/1/012063

Guy, N., Lancry-Dayan, O. C., & Pertzov, Y. (2020). Not all fixations are created equal: the benefits of using ex-Gaussian modeling of fixation durations. Journal of vision, 20(10), 9-9. https://doi.org/10.1167/JOV.20.10.9

Hernán, Q. S. R., Escriba, L. A. R., Cueva, E. L. L., & Mora, N. M. L. (2021). Análisis de las características de la realidad aumentada aplicada a la educación. HAMUT'AY, 7(3), 75-85. http://dx.doi.org/10.21503/hamu.v7i3.2202

Hidayat, N., Hadi, S., Basith, A., & Suwandi, S. (2018). Developing e-learning media with the contiguity principle for the subject of AutoCad. Jurnal Pendidikan Teknologi dan Kejuruan, 24(1), 72-82. https://doi.org/10.21831/JPTK.V24I1.17796

Holsanova, J., Holmberg, N., & Holmqvist, K. (2009). Reading information graphics: the role of spatial contiguity and dual attentional guidance. Applied Cognitive Psychology, 23(9), 1215-1226. https://doi.org/10.1002/acp.1525

Huckauf, A., Urbina, M. H., Grubert, J., Böckelmann, I., Doil, F., Schega, L., ... & Mecke, R. (2010). Perceptual issues in optical-see-through displays. In Proceedings of the ACM Symposium on Applied Perception (pp. 41-48). ACM. https://doi.org/10.1145/1836248.1836255

Jarodzka, H., Janssen, N., Kirschner, P. A., & Erkens, G. (2015). Avoiding split attention in computer-based testing: Is neglecting additional information facilitative? British Journal of Educational Technology, 46(4), 803-817. https://doi.org/10.1111/bjet.12174

Kalia, M., Schulte zu Berge, C., Roodaki, H., Chakraborty, C., & Navab, N. (2016). Interactive depth of focus for improved depth perception. In Medical Imaging and Augmented Reality: 7th International Conference, MIAR 2016, Bern, Switzerland, August 24-26, 2016, Proceedings 7 (pp. 221-232). Springer International Publishing. https://doi.org/10.1007/978-3-319-43775-0_20

Krüger, J. M., & Bodemer, D. (2022). Application and investigation of multimedia design principles in augmented reality learning environments. Information, 13(2), 74. https://doi.org/10.3390/info13020074

LeBel, M. E., Haverstock, J., Cristancho, S., van Eimeren, L., & Buckingham, G. (2017). Observational learning during simulation-based training in arthroscopy: Is it useful to novices? Journal of Surgical Education, 1-9. https://doi.org/10.1016/j.jsurg.2017.06.005

Lei, X., Tsai, Y.-L., & Rau, P.-L. P. (2019). Effect of layout on user performance and subjective evaluation in an augmented-reality environment. In Lecture Notes in Computer Science (Vol. 11576, pp. 376-385). Springer. https://doi.org/10.1007/978-3-030-21999-9_32

Liu, J. C., Li, K. A., Yeh, S. L., & Chien, S. Y. (2022). Assessing perceptual load and cognitive load by fixation-related information of eye movements. Sensors, 22(3). https://doi.org/10.3390/s22031187

Macramalla, S., & Bridgeman, B. (2009). Anticipated effort in imagined self- rotation. Perception, 38(1), 79-91. https://doi.org/10.1068/p5905

Malta, A., Farinha, T., & Mendes, M. (2023). Augmented reality in maintenance—history and perspectives. Journal of Imaging, 9(7), 142. https://doi.org/10.3390/jimaging9070142

Mayer, R. E. (2005). Principles for reducing extraneous processing in multimedia learning : coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning (pp. 183–200). Chapter, Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511816819.013

Mayer, R., E. (2008). Multimedia learning: spatial contiguity principle. https://doi.org/10.1017/CBO9780511811678.010

Mayer, R. E. (2020). Multimedia learning (3rd ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316941355

Müller, T., & Dauenhauer, R. (2016). A taxonomy for information linking in augmented reality. In Augmented Reality, Virtual Reality, and Computer Graphics: Third International Conference, AVR 2016, Lecce, Italy, June 15-18, 2016. Proceedings, Part I 3 (pp. 368-387). Springer International Publishing. https://doi.org/10.1007/978-3-319-40621-3

Noetel, M., Griffith, S., Delaney, O., Harris, N. R., Sanders, T., Parker, P., ... & Lonsdale, C. (2022). Multimedia design for learning: an overview of reviews with meta-meta-analysis. Review of Educational Research, 92(3), 413-454. https://doi.org/10.3102/00346543211052329

Paek, S., Hoffman, D. L., & Saravanos, A. (2017). Spatial contiguity and incidental learning in multimedia environments. British Journal of Educational Technology, 48(6), 1390-1401. https://doi.org/10.1111/BJET.12488

Pielage, H., Zekveld, A. A., van de Ven, S., Kramer, S. E., & Naber, M. (2022). The pupil near response is short lasting and intact in virtual reality head mounted displays. Journal of Eye Movement Research, 15(3). https://doi.org/10.16910/jemr.15.3.6

Putri, N. P. D. M., Suharta, I. G. P., & Astawa, I. W. P. (2022). Development of augmented reality based geometry-learning media oriented to Balinese architecture to improve ability student mathematics spatial. International Journal of Engineering Technologies and Management Research, 9(10), 26–42. https://doi.org/10.29121/ijetmr.v9.i10.2022.1183

Rashid, U., Nacenta, M. A., & Quigley, A. (2012). Factors influencing visual attention switch in multi-display user interfaces. In Proceedings of the International Symposium on Pervasive Displays (pp. 1-6). ACM. https://doi.org/10.1145/2307798.2307799

Rasmussen, S. R., Konge, L., Mikkelsen, P. T., Sørensen, M. S., & Andersen, S. A. W. (2016). Secondary task precision for cognitive load estimation during virtual reality surgical simulation training. Evaluation & the Health Professions, 39(1), 114-120. https://doi.org/10.1177/0163278715597962

Rodemer, M., Karch, J., & Bernholt, S. (2023, April). Pupil dilation as cognitive load measure in instructional videos on complex chemical representations. Frontiers in Education, 8. Frontiers Media SA. https://doi.org/10.3389/feduc.2023.1062053

Schroeder, N. L., & Cenkci, A. T. (2018). Spatial contiguity and spatial split-attention effects in multimedia learning environments: a meta-analysis. Educational Psychology Review, 30(3), 679-701. https://doi.org/10.1007/S10648-018-9435-9

Seraji, F., Bayat, Z., Abbasi Kasani, H., & Abedi, H. (2020). Comparing two forms of spatial contiguity principle in student learning: 'text linked to image' versus 'text in image adjacency'. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 11(2), 84-91. https://doi.org/10.30476/IJVLMS.2020.85968.1029

Singh, B., Vig, K., & Kaunert, C. (2024). Modernizing healthcare: application of augmented reality and virtual reality in clinical practice and medical education. In Modern Technology in Healthcare and Medical Education: Blockchain, IoT, AR, and VR (pp. 1-21). IGI Global. https://doi.org/10.4018/979-8-3693-5493-3.ch001

Solehatin, S., Aslamiyah, S., Pertiwi, D. A. A., & Santosa, K. (2023). Augmented reality development using multimedia development life cycle (MDLC) method in learning media. Journal of Soft Computing Exploration, 4(1). https://doi.org/10.52465/joscex.v4i1.118

Stoltmann, K., Fuchs, S., & Krifka, M. (2020, August). Cross-linguistic differences in side assignment to objects and interpretation of spatial relations: right and left in German and Italian. In German Conference on Spatial Cognition (pp. 235-250). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-57983-8_18

Suzuki, Y., Wild, F., & Scanlon, E. (2024). Measuring cognitive load in augmented reality with physiological methods: A systematic review. Journal of Computer Assisted Learning, 40(2), 375-393. https://doi.org/10.1111/jcal.12882

Sweller, J. (2020). Cognitive load theory and educational technology. Educational technology research and development, 68(1), 1-16. https://doi.org/10.1007/s11423-019-09701-3

Sweller, J., Van Merrienboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational psychology review, 31, 261-292. https://doi.org/10.1007/s10648-019-09465-5

Takeuchi, T., Puntous, T., Tuladhar, A., Yoshimoto, S., & Shirama, A. (2011). Estimation of mental effort in learning visual search by measuring pupil response. PloS one, 6(7), e21973. https://doi.org/10.1371/JOURNAL.PONE.0021973

Tao, D., Tan, H., Wang, H., Zhang, X., Qu, X., & Zhang, T. (2019). A systematic review of physiological measures of mental workload. International Journal of Environmental Research and Public Health, 16(15), 1-23. https://doi.org/10.3390/ijerph16152716

Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. https://doi.org/10.1016/j.chb.2020.106316

Tene, T., Vique López, D. F., Valverde Aguirre, P. E., Orna Puente, L. M., & Vacacela Gomez, C. (2024). Virtual reality and augmented reality in medical education: an umbrella review. Frontiers in Digital Health, 6, 1365345. https://doi.org/10.3389/fdgth.2024.1365345

Trávez, G. C. (2023). El uso de la realidad aumentada en la enseñanza de ciencias: un enfoque integrador en educación secundaria. Revista Científica Kosmos, 2(1), 39-50. https://doi.org/10.62943/rck.v2n1.2023.43

Van Merriënboer, J. J. G., & Kester, L. (2014). The four-component instructional design model: multimedia principles in environments for complex learning. In R. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning (pp. 104-148). Cambridge University Press.

Wang, Y. T., & Wang, C. H. (2016). A study of effects on cognitive load and learning achievement with different spatial ability using synchronized multi-display.

Wang, Z., Bai, X., Zhang, S., Billinghurst, M., He, W., Wang, P., ... & Chen, Y. (2022). A comprehensive review of augmented reality-based instruction in manual assembly, training and repair. Robotics and Computer-Integrated Manufacturing, 78, 102407. https://doi.org/10.1016/j.rcim.2022.102407

Yang, X., Wang, F., Mayer, R. E., Hu, X., & Gu, C. (2023). Ocular foundations of the spatial contiguity principle: Designing multimedia materials for parafoveal vision. Journal of Educational Psychology, 115(8), 1125–1140. https://doi.org/10.1037/edu0000823

Zacharis, G. K., Mikropoulos, T. A., & Kalyvioti, K. (2016). Cognitive load and attentional demands during objects' position change in real and digital environments. Themes in Science and Technology Education, 9(2), 83-91.

Zhang, Z., Li, Z., Han, M., Su, Z., Li, W., & Pan, Z. (2021). An augmented reality-based multimedia environment for experimental education. Multimedia Tools and Applications, 80(1), 575-590. https://doi.org/10.1007/S11042-020-09684-X

Zu, T., Hutson, J., Loschky, L. C., & Sanjay Rebello, N. (2018). Use of eye-tracking technology to investigate cognitive load theory. arXiv, 472-475. https://doi.org/10.1119/perc.2017.pr.113

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.

Derechos de autor 2024 Pixel-Bit. Revista de Medios y Educación

Descargas

Los datos de descargas todavía no están disponibles.