Abstract
The spatial layout of information spaces in augmented reality (AR) environments plays a crucial role in modulating users' mental effort. This study aims to investigate how contiguity and discontiguity between physical objects and information spaces, both horizontally and vertically, affects cognitive load during interaction with procedural content. Four separate experiments were conducted, measuring pupil dilation and fixation duration as indicators of mental effort. These measures provide a comprehensive view on the influence of spatial layout. The findings are discussed within the framework of the existing literature, contrasting the results with previous studies and providing a basis for future research in the design of educational materials and learning environments. The results obtained across the four experiments show that the spatial arrangement of information in AR environments significantly affects participants' mental effort, as measured by pupil dilation and fixation duration. These measures are consistent with previous literature indicating that increased pupil dilation is an indicator of increased mental effort.
References
Acosta, J. L. B., Navarro, S. M. B., Gesa, R. F., & Kinshuk, K. (2019). Framework for designing motivational augmented reality applications in vocational education and training. Australasian Journal of Educational Technology, 35(3). https://doi.org/10.14742/ajet.4182
Amir Alkodri, A. A., Harrizki, H., & Suharno, S. (2020). Penerapan algoritma surf pendeteksi objek pada augmented reality berbasis android. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 6(2), 240-249. https://doi.org/10.35957/JATISI.V6I2.217
Anderson, R., & Campbell, M. J. (2015). Accelerating skill acquisition in rowing using self-based observational learning and expert modelling during performance. International Journal of Sports Science & Coaching, 10(2-3), 425-437. https://doi.org/10.1260/1747-9541.10.2-3.425
Andrade-Lotero, L. A. (2012). Teoría de la carga cognitiva, diseño multimedia y aprendizaje: un estado del arte. Magis. Revista Internacional de Investigación en Educación, 5, 75-92.
Barnas, A. J., & Greenberg, A. S. (2019). Object-based attention shifts are driven by target location, not object placement. Visual Cognition, 27(9-10), 768-791. https://doi.org/10.1080/13506285.2019.168058
Bautista, L. E., Guerrero, J., & Plata, C. (2022). Multimedia principles applied to a virtual reality application design for procedural learning. Avances en Interacción Humano-Computadora, 7(1), 9-12. https://doi.org/10.47756/aihc.y7i1.119
Beege, M., Wirzberger, M., Nebel, S., Schneider, S., Schmidt, N., & Rey, G. D. (2019, August). Spatial continuity effect vs. spatial contiguity failure. Revising the effects of spatial proximity between related and unrelated representations. Frontiers in Education, 4. https://doi.org/10.3389/feduc.2019.00086
Bertrand, J., Bhargava, A., Madathil, K. C., Gramopadhye, A., & Babu, S. V. (2017). The effects of presentation method and simulation fidelity on psychomotor education in a bimanual metrology training simulation. In 2017 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 59-68). IEEE. https://doi.org/10.1109/3DUI.2017.7893318
Brunken, R., Plass, J. L., Leutner, D., Brünken, R., & Plass, J. L. (2016). Direct measurement of cognitive load in multimedia learning. Educational Psychology, 1520(July), 37-41. https://doi.org/10.1207/S15326985EP3801
Cammeraat, S., Rop, G., & de Koning, B. B. (2020). The influence of spatial distance and signaling on the split-attention effect. Computers in Human Behavior, 105, 106203. https://doi.org/10.1016/j.chb.2019.106203
Çeken, B., & Taşkın, N. (2022). Multimedia learning principles in different learning environments: a systematic review. Smart Learning Environments, 9(1), 19. https://doi.org/10.1186/s40561-022-00200-2
Cheng, T., Lu, Y., & Yang, C. (2015). Using the multi-display teaching system to lower cognitive load. International Journal of Human-Computer Interaction, 18, 128-140. http://www.jstor.org/stable/jeductechsoci.18.4.128
Chikha, A. B., Khacharem, A., Trabelsi, K., & Bragazzi, N. L. (2021). The effect of spatial ability in learning from static and dynamic visualizations: a moderation analysis in 6-year-old children. Frontiers in Psychology, 12, 583968. https://doi.org/10.3389/fpsyg.2021.583968
Chow, H. (2021). Augmented reality using vixassist and hololens 2 for automotive service and maintenance. XR Case Studies: Using Augmented Reality and Virtual Reality Technology in Business, 59-66. https://doi.org/10.1007/978-3-030-72781-9_8
Craig, S. D., Twyford, J., Irigoyen, N., & Zipp, S. A. (2015). A test of spatial contiguity for virtual human’s gestures in multimedia learning environments. Journal of Educational Computing Research, 53(1), 3-14. https://doi.org/10.1177/0735633115585927
Czok, V., Krug, M., Müller, S., Huwer, J., Kruse, S., Müller, W., & Weitzel, H. (2023). A framework for analysis and development of augmented reality applications in science and engineering teaching. Education Sciences, 13(9), 926. https://doi.org/10.3390/educsci13090926
Danielsson, O., Holm, M., & Syberfeldt, A. (2020). Augmented reality smart glasses in industrial assembly: current status and future challenges. Journal of Industrial Information Integration, 20, 100175. https://doi.org/10.1016/j.jii.2020.100175
de Koning, B. B., Rop, G., & Paas, F. (2020). Effects of spatial distance on the effectiveness of mental and physical integration strategies in learning from split-attention examples. Computers in Human Behavior, 110, 106379. https://doi.org/10.1016/j.chb.2020.106379
de Nooijer, J. A., Van Gog, T., Paas, F., & Zwaan, R. A. (2013). When left is not right: handedness effects on learning object-manipulation words using pictures with left-or right-handed first-person perspectives. Psychological Science, 24(12), 2515-2521. https://doi.org/10.1177/0956797613498908
Doolani, S., Wessels, C., Kanal, V., Sevastopoulos, C., Jaiswal, A., Nambiappan, H., & Makedon, F. (2020). A review of extended reality (xr) technologies for manufacturing training. Technologies, 8(4), 77. https://doi.org/10.3390/technologies8040077
Drouot, M., Le Bigot, N., Bricard, E., De Bougrenet, J. L., & Nourrit, V. (2022). Augmented reality on industrial assembly line: Impact on effectiveness and mental workload. Applied Ergonomics, 103, 103793. https://doi.org/10.1016/j.apergo.2022.103793
Einhäuser, W., Atzert, C., & Nuthmann, A. (2020). Fixation durations in natural scene viewing are guided by peripheral scene content. Journal of vision, 20(4), 15-15. https://doi.org/10.1167/JOV.20.4.15
Ens, B., Finnegan, R., & Irani, P. (2014). The personal cockpit: a spatial interface for effective task switching on head-worn displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 3171-3180). ACM. https://doi.org/10.1145/2556288.2557058
Evans, A., Shevlin, S., Laurent, D. B. S., Bowness, J., Kearns, R. J., & MacFarlane, A. (2023). Pilot study exploring if an augmented reality needletrainer device improves novice performance of a simulated central venous catheter insertion on a phantom. Cureus, 15(6). https://doi.org/10.7759/cureus.40197
Evans, G., Miller, J., Iglesias Pena, M., MacAllister, A., & Winer, E. (2017). Evaluating the Microsoft HoloLens through an augmented reality assembly application. SPIE, 101970V. https://doi.org/10.1117/12.2262626
Franklin, M. S., Broadway, J. M., Mrazek, M. D., Smallwood, J., & Schooler, J. W. (2013). Window to the wandering mind: pupillometry of spontaneous thought while reading. Quarterly Journal of Experimental Psychology, 66(12), 2289-2294. https://doi.org/10.1080/17470218.2013.858170
Garzón, J., & Acevedo, J. (2019). Meta-analysis of the impact of augmented reality on students’ learning gains. Educational Research Review, 27, 244-260. https://doi.org/10.1016/j.edurev.2019.04.001
Geng, X., & Yamada, M. (2020). The effects of augmented reality on learning performance and cognitive load using the spatial continuity principle. International Association for Development of the Information Society. https://doi.org/10.33965/celda2020_202014l030
Guntur, M. I. S., Setyaningrum, W., & Retnawati, H. (2020, July). Can augmented reality improve problem-solving and spatial skill?. Journal of Physics: Conference Series 1581(1). https://doi.org/10.1088/1742-6596/1581/1/012063
Guy, N., Lancry-Dayan, O. C., & Pertzov, Y. (2020). Not all fixations are created equal: the benefits of using ex-Gaussian modeling of fixation durations. Journal of vision, 20(10), 9-9. https://doi.org/10.1167/JOV.20.10.9
Hernán, Q. S. R., Escriba, L. A. R., Cueva, E. L. L., & Mora, N. M. L. (2021). Análisis de las características de la realidad aumentada aplicada a la educación. HAMUT'AY, 7(3), 75-85. http://dx.doi.org/10.21503/hamu.v7i3.2202
Hidayat, N., Hadi, S., Basith, A., & Suwandi, S. (2018). Developing e-learning media with the contiguity principle for the subject of AutoCad. Jurnal Pendidikan Teknologi dan Kejuruan, 24(1), 72-82. https://doi.org/10.21831/JPTK.V24I1.17796
Holsanova, J., Holmberg, N., & Holmqvist, K. (2009). Reading information graphics: the role of spatial contiguity and dual attentional guidance. Applied Cognitive Psychology, 23(9), 1215-1226. https://doi.org/10.1002/acp.1525
Huckauf, A., Urbina, M. H., Grubert, J., Böckelmann, I., Doil, F., Schega, L., ... & Mecke, R. (2010). Perceptual issues in optical-see-through displays. In Proceedings of the ACM Symposium on Applied Perception (pp. 41-48). ACM. https://doi.org/10.1145/1836248.1836255
Jarodzka, H., Janssen, N., Kirschner, P. A., & Erkens, G. (2015). Avoiding split attention in computer-based testing: Is neglecting additional information facilitative? British Journal of Educational Technology, 46(4), 803-817. https://doi.org/10.1111/bjet.12174
Kalia, M., Schulte zu Berge, C., Roodaki, H., Chakraborty, C., & Navab, N. (2016). Interactive depth of focus for improved depth perception. In Medical Imaging and Augmented Reality: 7th International Conference, MIAR 2016, Bern, Switzerland, August 24-26, 2016, Proceedings 7 (pp. 221-232). Springer International Publishing. https://doi.org/10.1007/978-3-319-43775-0_20
Krüger, J. M., & Bodemer, D. (2022). Application and investigation of multimedia design principles in augmented reality learning environments. Information, 13(2), 74. https://doi.org/10.3390/info13020074
LeBel, M. E., Haverstock, J., Cristancho, S., van Eimeren, L., & Buckingham, G. (2017). Observational learning during simulation-based training in arthroscopy: Is it useful to novices? Journal of Surgical Education, 1-9. https://doi.org/10.1016/j.jsurg.2017.06.005
Lei, X., Tsai, Y.-L., & Rau, P.-L. P. (2019). Effect of layout on user performance and subjective evaluation in an augmented-reality environment. In Lecture Notes in Computer Science (Vol. 11576, pp. 376-385). Springer. https://doi.org/10.1007/978-3-030-21999-9_32
Liu, J. C., Li, K. A., Yeh, S. L., & Chien, S. Y. (2022). Assessing perceptual load and cognitive load by fixation-related information of eye movements. Sensors, 22(3). https://doi.org/10.3390/s22031187
Macramalla, S., & Bridgeman, B. (2009). Anticipated effort in imagined self- rotation. Perception, 38(1), 79-91. https://doi.org/10.1068/p5905
Malta, A., Farinha, T., & Mendes, M. (2023). Augmented reality in maintenance—history and perspectives. Journal of Imaging, 9(7), 142. https://doi.org/10.3390/jimaging9070142
Mayer, R. E. (2005). Principles for reducing extraneous processing in multimedia learning : coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning (pp. 183–200). Chapter, Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511816819.013
Mayer, R., E. (2008). Multimedia learning: spatial contiguity principle. https://doi.org/10.1017/CBO9780511811678.010
Mayer, R. E. (2020). Multimedia learning (3rd ed.). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781316941355
Müller, T., & Dauenhauer, R. (2016). A taxonomy for information linking in augmented reality. In Augmented Reality, Virtual Reality, and Computer Graphics: Third International Conference, AVR 2016, Lecce, Italy, June 15-18, 2016. Proceedings, Part I 3 (pp. 368-387). Springer International Publishing. https://doi.org/10.1007/978-3-319-40621-3
Noetel, M., Griffith, S., Delaney, O., Harris, N. R., Sanders, T., Parker, P., ... & Lonsdale, C. (2022). Multimedia design for learning: an overview of reviews with meta-meta-analysis. Review of Educational Research, 92(3), 413-454. https://doi.org/10.3102/00346543211052329
Paek, S., Hoffman, D. L., & Saravanos, A. (2017). Spatial contiguity and incidental learning in multimedia environments. British Journal of Educational Technology, 48(6), 1390-1401. https://doi.org/10.1111/BJET.12488
Pielage, H., Zekveld, A. A., van de Ven, S., Kramer, S. E., & Naber, M. (2022). The pupil near response is short lasting and intact in virtual reality head mounted displays. Journal of Eye Movement Research, 15(3). https://doi.org/10.16910/jemr.15.3.6
Putri, N. P. D. M., Suharta, I. G. P., & Astawa, I. W. P. (2022). Development of augmented reality based geometry-learning media oriented to Balinese architecture to improve ability student mathematics spatial. International Journal of Engineering Technologies and Management Research, 9(10), 26–42. https://doi.org/10.29121/ijetmr.v9.i10.2022.1183
Rashid, U., Nacenta, M. A., & Quigley, A. (2012). Factors influencing visual attention switch in multi-display user interfaces. In Proceedings of the International Symposium on Pervasive Displays (pp. 1-6). ACM. https://doi.org/10.1145/2307798.2307799
Rasmussen, S. R., Konge, L., Mikkelsen, P. T., Sørensen, M. S., & Andersen, S. A. W. (2016). Secondary task precision for cognitive load estimation during virtual reality surgical simulation training. Evaluation & the Health Professions, 39(1), 114-120. https://doi.org/10.1177/0163278715597962
Rodemer, M., Karch, J., & Bernholt, S. (2023, April). Pupil dilation as cognitive load measure in instructional videos on complex chemical representations. Frontiers in Education, 8. Frontiers Media SA. https://doi.org/10.3389/feduc.2023.1062053
Schroeder, N. L., & Cenkci, A. T. (2018). Spatial contiguity and spatial split-attention effects in multimedia learning environments: a meta-analysis. Educational Psychology Review, 30(3), 679-701. https://doi.org/10.1007/S10648-018-9435-9
Seraji, F., Bayat, Z., Abbasi Kasani, H., & Abedi, H. (2020). Comparing two forms of spatial contiguity principle in student learning: 'text linked to image' versus 'text in image adjacency'. Interdisciplinary Journal of Virtual Learning in Medical Sciences, 11(2), 84-91. https://doi.org/10.30476/IJVLMS.2020.85968.1029
Singh, B., Vig, K., & Kaunert, C. (2024). Modernizing healthcare: application of augmented reality and virtual reality in clinical practice and medical education. In Modern Technology in Healthcare and Medical Education: Blockchain, IoT, AR, and VR (pp. 1-21). IGI Global. https://doi.org/10.4018/979-8-3693-5493-3.ch001
Solehatin, S., Aslamiyah, S., Pertiwi, D. A. A., & Santosa, K. (2023). Augmented reality development using multimedia development life cycle (MDLC) method in learning media. Journal of Soft Computing Exploration, 4(1). https://doi.org/10.52465/joscex.v4i1.118
Stoltmann, K., Fuchs, S., & Krifka, M. (2020, August). Cross-linguistic differences in side assignment to objects and interpretation of spatial relations: right and left in German and Italian. In German Conference on Spatial Cognition (pp. 235-250). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-57983-8_18
Suzuki, Y., Wild, F., & Scanlon, E. (2024). Measuring cognitive load in augmented reality with physiological methods: A systematic review. Journal of Computer Assisted Learning, 40(2), 375-393. https://doi.org/10.1111/jcal.12882
Sweller, J. (2020). Cognitive load theory and educational technology. Educational technology research and development, 68(1), 1-16. https://doi.org/10.1007/s11423-019-09701-3
Sweller, J., Van Merrienboer, J. J., & Paas, F. (2019). Cognitive architecture and instructional design: 20 years later. Educational psychology review, 31, 261-292. https://doi.org/10.1007/s10648-019-09465-5
Takeuchi, T., Puntous, T., Tuladhar, A., Yoshimoto, S., & Shirama, A. (2011). Estimation of mental effort in learning visual search by measuring pupil response. PloS one, 6(7), e21973. https://doi.org/10.1371/JOURNAL.PONE.0021973
Tao, D., Tan, H., Wang, H., Zhang, X., Qu, X., & Zhang, T. (2019). A systematic review of physiological measures of mental workload. International Journal of Environmental Research and Public Health, 16(15), 1-23. https://doi.org/10.3390/ijerph16152716
Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316. https://doi.org/10.1016/j.chb.2020.106316
Tene, T., Vique López, D. F., Valverde Aguirre, P. E., Orna Puente, L. M., & Vacacela Gomez, C. (2024). Virtual reality and augmented reality in medical education: an umbrella review. Frontiers in Digital Health, 6, 1365345. https://doi.org/10.3389/fdgth.2024.1365345
Trávez, G. C. (2023). El uso de la realidad aumentada en la enseñanza de ciencias: un enfoque integrador en educación secundaria. Revista Científica Kosmos, 2(1), 39-50. https://doi.org/10.62943/rck.v2n1.2023.43
Van Merriënboer, J. J. G., & Kester, L. (2014). The four-component instructional design model: multimedia principles in environments for complex learning. In R. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning (pp. 104-148). Cambridge University Press.
Wang, Y. T., & Wang, C. H. (2016). A study of effects on cognitive load and learning achievement with different spatial ability using synchronized multi-display.
Wang, Z., Bai, X., Zhang, S., Billinghurst, M., He, W., Wang, P., ... & Chen, Y. (2022). A comprehensive review of augmented reality-based instruction in manual assembly, training and repair. Robotics and Computer-Integrated Manufacturing, 78, 102407. https://doi.org/10.1016/j.rcim.2022.102407
Yang, X., Wang, F., Mayer, R. E., Hu, X., & Gu, C. (2023). Ocular foundations of the spatial contiguity principle: Designing multimedia materials for parafoveal vision. Journal of Educational Psychology, 115(8), 1125–1140. https://doi.org/10.1037/edu0000823
Zacharis, G. K., Mikropoulos, T. A., & Kalyvioti, K. (2016). Cognitive load and attentional demands during objects' position change in real and digital environments. Themes in Science and Technology Education, 9(2), 83-91.
Zhang, Z., Li, Z., Han, M., Su, Z., Li, W., & Pan, Z. (2021). An augmented reality-based multimedia environment for experimental education. Multimedia Tools and Applications, 80(1), 575-590. https://doi.org/10.1007/S11042-020-09684-X
Zu, T., Hutson, J., Loschky, L. C., & Sanjay Rebello, N. (2018). Use of eye-tracking technology to investigate cognitive load theory. arXiv, 472-475. https://doi.org/10.1119/perc.2017.pr.113
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2024 Pixel-Bit. Media and Education Journal