Professional male modern boxing: An analysis of activity profile by category

Authors

  • Vicente Puchol National Institute of Physical Education of Catalonia (INEFC), University of Barcelona, Barcelona, Spain https://orcid.org/0000-0002-7388-3065
  • Jose Antonio Sanchez Fuentes 2Department of Physical Activity and Sport, Univeerity of Murcia, Murcia (Spain)
  • Lluís Albesa Albiol TecnoCampus Department of Health Sciences, Pompeu Fabra University, Mataró (Spain). https://orcid.org/0000-0003-1871-6157
  • Toni Caparrós Pons Instituto Nacional de Educación Física de Cataluña (INEFC), centro de Barcelona

DOI:

https://doi.org/10.47197/retos.v50.99923

Keywords:

Performance, trajectory analysis, punch indicators, power punches, ecological study

Abstract

The purpose of this study is to examine modern professional male boxing by analyzing world champions differences between winners and losers by categories. 322 male professional boxers (age 28.95 ± 4.10, height 175.26 ± 9.44 cm, and weight 147.82 ± 31.31 lb) were included in this observational descriptive analysis, through 320 fights separated by weight divisions [Heavy (H) (n = 24), Cruiser (C) (n = 48), Light Heavy (LH) (n = 62), Super Middle Weight (SMW) (n = 17), Middle Weight (MW) (n = 68), Light Middle Weight (LMW) (n = 42), Welter Weight (WW) (n = 49), Light Welter Weight (LWW) (n = 28), Light Welter (LW) (n = 33), Super Feather Weight (SFW) (n = 63), Feather Weight (FW) (n = 66), Super Bantam Weight (SBW) (n = 42), Bantam Weight (BW) (n = 30), Super Fly Weight (SFLW) (n = 39), Flyweight (F) (n = 29)]. Differences were found between winners and losers (U = 57804 - 90908.5; p <.001; d = 0.129 - 0.776) for all the variables analyzed. Four significant correlations were highlighted: %PL (Percentage of Punches Landed) (rho = .630); AVG PLxR (Punches Landed Per Round) (rho = .594); AVG PPLxR (Power Punches Landed Per Round) (rho = .517); %PPL (Percentage of Power Punches Landed) (rho = .672) and differences were also observed between weight categories (H = 32.29 - 93.11; p <.001 - .004), except for %PL, AVG JLxR, %JL (Percentage of Jabs Landed) and %PPL. This data suggests that in order to win these events, fighters must deliver precise punches, especially power punches, and that there are differences between the categories with this type of punch (AVG PPLxR).

Keywords: Performance, trajectory analysis, punch indicators, power punches, ecological study

References

Barley, O. R., Chapman, D. W., Guppy, S. N., & Abbiss, C. R. (2019). Considerations when assessing endurance in combat sport athletes. Frontiers in Physiology, 10(MAR), 1–9. https://doi.org/10.3389/fphys.2019.00205

Batista, M. A. S., Sequeira, D., Gancho, H., & Fernandes, J. (2022). Predominance of techniques analysis used in the final rounds of judo international competitions scoring for the Olympic ranking: A biomechanical approach. Retos, 46, 833–842. https://doi.org/https://doi.org/10.47197/retos.v46.94538

Bianco, M., Loosemore, M., Daniele, G., Palmieri, V., Faina, M., & Zeppilli, P. (2013). Amateur boxing in the last 59 years. Impact of rules changes on the type of verdicts recorded and implications on boxers’ health. British Journal of Sports Medicine, 47(7), 452–457. https://doi.org/10.1136/bjsports-2012-091771

Bridge, C. A., Jones, M. A., & Drust, B. (2011). The activity profile in international taekwondo competition is modulated by weight category. International Journal of Sports Physiology and Performance, 6(3), 344–357. https://doi.org/10.1123/ijspp.6.3.344

Davis, P., Benson, P. R., Pitty, J. D., Connorton, A. J., & Waldock, R. (2015). The Activity Profile of Elite Male Amateur Boxing. International Journal of Sports Physiology and Performance, 10(1), 53–57. https://doi.org/https://doi.org/10.1123/ijspp.2013-0474

Davis, P., Benson, P. R., Waldock, R., & Connorton, A. J. (2016). Performance analysis of elite female amateur boxers and comparison with their male counterparts. International Journal of Sports Physiology and Performance, 11(1), 55–60. https://doi.org/10.1123/ijspp.2014-0133

Davis, P., Connorton, A. J., Driver, S., Anderson, S., & Waldock, R. (2018). The activity profile of elite male amateur boxing after the 2013 rule changes. Journal of Strength and Conditioning Research, 32(12), 3441–3446. https://doi.org/10.1519/jsc.0000000000001864

Davis, P., Wittekind, A., & Beneke, R. (2013). Amateur boxing: Activity profile of winners and losers. International Journal of Sports Physiology and Performance, 8(1), 84–91. https://doi.org/10.1123/ijspp.8.1.84

Dunn, E. C., Humberstone, C. E., Fiona Iredale, K., Martin, D. T., & Blazevich, A. J. (2017). Human behaviours associated with dominance in elite amateur boxing bouts: A comparison of winners and losers under the Ten Point Must System. PLoS ONE, 12(12), 1–12. https://doi.org/10.1371/journal.pone.0188675

El-Ashker, S., Chaabene, H., Negra, Y., Prieske, O., & Granacher, U. (2018). Cardio-respiratory endurance responses following a simulated 3 × 3 minutes amateur boxing contest in elite level boxers. Sports, 6(4). https://doi.org/10.3390/sports6040119

El Ashker, S. (2011). Technical and tactical aspects that differentiate winning and losing performances in boxing. International Journal of Performance Analysis in Sport, 11(2), 356–364. https://doi.org/10.1080/24748668.2011.11868555

Finlay, M. J. (2022). World Heavyweight Championship boxing: The past 30+ years of the male division. PLoS ONE, 17(1 January), 1–11. https://doi.org/10.1371/journal.pone.0263038

Franchini, E., Cormark, S., & Takito, M. Y. (2019). Effects of High-Intensity Interval Training on Olympic Combat Sports Athletes’ Performance and Physiological Adaptation A Systematic Review. Journal of Strength and Conditioning Research, 33(1), 242–252. https://doi.org/10.1519/JSC.0000000000002957

García Pazmiño, M. A., García Ucha, F., Arévalo García, N. A., & García Pazmmiño, S. T. (2018). Presiones Deportivas y Disposición Óptima Combativa (Sports Pressures and Optimal Combative Disposition). Retos, 2041(35), 335–340. https://doi.org/10.47197/retos.v0i35.61911

Guidetti, L., Musulin, A., & Baldari, C. (2002). Physiological factors in middleweight boxing performance. The Journal of Sports Medicine and Physical Fitness, 42(3), 309–314. https://pubmed.ncbi.nlm.nih.gov/12094121/

Halperin, I., Chapman, D. W., Thompson, K. G., & Abbiss, C. (2019). False-performance feedback does not affect punching forces and pacing of elite boxers. Journal of Sports Sciences, 37(1), 59–66. https://doi.org/10.1080/02640414.2018.1482526

Hopkins, W. G. (2002). A Scale of Magnitudes for Effect Statics. Internet Society for Sports Science. http://www.sportsci.org/resource/stats/index.html

Hristovski, R., Davids, K., Araújo, D., & Button, C. (2006). How Boxers Decide to Punch a Target: Emergent Behaviour in Nonlinear Dynamical Movement Systems. Journal of Sports Science & Medicine, 5(CSSI), 60–73. http://www.jssm.org

Hughes, M. D., & Bartlett, R. M. (2002). The use of performance indicators in performance analysis. Journal of Sports Sciences, 20(10), 739–754. https://doi.org/10.1080/026404102320675602

IBA. (2021). IBA Technical & Competition Rules. https://www.iba.sport/wp-content/uploads/2022/02/IBA-Technical-and-Competition-Rules_20.09.21_Updated_.pdf

International Boxing Federation. (2022). https://www.ibf-usba-boxing.com/index.php/ratings/ibf-ratings

Kirk, C. (2018). Does anthropometry influence technical factors in competitive mixed martial arts? Human Movement, 19(2), 46–59. https://doi.org/10.5114/hm.2018.74059

Kojman, Y., Beeching, K., Gomez, M. A., Parmar, N., & Nicholls, S. B. (2022). The role of debriefing in enhancing learning and development in professional boxing. International Journal of Performance Analysis in Sport, 22(2), 250–260. https://doi.org/10.1080/24748668.2022.2042640

Krabben, K., Orth, D., & van der Kamp, J. (2019). Combat as an Interpersonal Synergy: An Ecological Dynamics Approach to Combat Sports. Sports Medicine, 49(12), 1825–1836. https://doi.org/10.1007/s40279-019-01173-y

Kruszewski, M., Kruszewski, A., Kuźmicki, S., Sklepiński, Ł., Kępa, G., & Landowski, K. (2016). Boxing techniques based on the analysis of boxing tournament finals during Olympic Games in London in 2012. Journal of Combat Sports and Martial Arts, 7(2), 61–66. https://doi.org/10.5604/20815735.1224961

Lenetsky, S., Brughelli, M., Nates, R. J., Neville, J. G., Cross, M. R., & Lormier, A. V. (2020). Defining the Phases of Boxing Punches: A Mixed-Method Approach. Journal of Strength and Conditioning Research, 34(4), 1040–1051. https://doi.org/10.1519/JSC.0000000000002895

McCrory, P., Falvey, É., & Turner, M. (2012). Returning to the golden age of boxing. British Journal of Sports Medicine, 46(7), 459–460. https://doi.org/10.1136/bjsports-2012-091276

Morton, J. P., Robertson, C., Sutton, L., & MacLaren, D. P. M. (2010). Making the weight: A case study from professional boxing. International Journal of Sport Nutrition and Exercise Metabolism, 20(1), 80–85. https://doi.org/10.1123/ijsnem.20.1.80

Murugappan, K. R., Reale, R., Baribeau, V., O’Gara, B. P., Mueller, A., & Sarge, T. (2021). Rapid weight gain following weight cutting in male professional boxers. Physician and Sportsmedicine, 00(00), 1–7. https://doi.org/10.1080/00913847.2021.1960780

O’Donoghue, P. (2009). Research methods for sports performance analysis. Routledge. https://doi.org/10.4324/9780203878309

Ouergui, I., Hssin, N., Franchini, E., Gmada, N., & Bouhlel, E. (2013). Technical and tactical analysis of high level kickboxing matches. International Journal of Performance Analysis in Sport, 13(2), 294–309. https://doi.org/10.1080/24748668.2013.11868649

Pic, M. (2018). Quality, height, age and home advantage in boxing. RICYDE: Revista Internacional de Ciencias Del Deporte, 14(52), 174–187. https://doi.org/https://doi.org/10.5232/ricyde2018.05207 RICYDE.

Pic, M., & Jonsson, G. K. (2021). Professional boxing analysis with T-Patterns. Physiology and Behavior, 232(January). https://doi.org/10.1016/j.physbeh.2021.113329

Pierce, J. D., Reinbold, K. A., Lyngard, B. C., Goldman, R. J., & Pastore, C. M. (2006). Direct Measurement of Punch Force During Six Professional Boxing Matches. Journal of Quantitative Analysis in Sports, 2(2). https://doi.org/10.2202/1559-0410.1004

Podhurskyi, S. E., & Pavlenko, I. A. (2021). Differentiated approach to the development of speed-strength capabilities of qualified Muay-Thai athletes, taking into account weight categories. Retos, 40, 365–374. https://doi.org/https://doi.org/10.47197/retos.v0i40.83499

Puchol, V., & Caparrós, T. (2020). Methodological analysis of boxing activity profile by category. Journal of Physical Education and Sport, 20(3), 2052–2060. https://doi.org/10.7752/jpes.2020.s3277

Ruddock, A., James, L., French, D., Rogerson, D., Driller, M., & Hembrough, D. (2021). High-intensity conditioning for combat athletes: Practical recommendations. Applied Sciences (Switzerland), 11(22). https://doi.org/10.3390/app112210658

Santos-Junior, R., & Franchini, E. (2021). Developing strength-endurance for combat sports athletes. Revista de Artes Marciales Asiáticas, 16(1s), 174. https://doi.org/10.18002/rama.v16i1s.7004

Schinke, R. J., & Ramsay, M. (2009). World title boxing: From early beginnings to the first bell. Journal of Sports Science and Medicine, 8(CSSI-3), 1–4.

Silva, J. J., Del Vecchio, F., Picanço, L., Takito, M. Y., & Franchini, E. (2011). Time-Motion analysis in Muay-Thai and Kick- Boxing amateur matches. Journal of Human Sport & Exercise, 6(3), 490–496. https://doi.org/10.4100/jhse.2011.63.02

Slimani, M., Chaabène, H., Davis, P., Franchini, E., Cheour, F., & Chamari, K. (2017). Performance Aspects and Physiological Responses in Male Amateur Boxing Competitions: A Brief Review. Journal of Strength and Conditioning Research, 31(4), 1132–1141. https://doi.org/10.1519/JSC.0000000000001643

Tasiopoulos, I., & Nikolaidis, P. T. (2022). Analysis of Olympic and World boxing medalists from 1904 to 2019: The role of age, height, weight categories and nationality. Biomedical Human Kinetics, 14(1), 159–168. https://doi.org/10.2478/bhk-2022-0020

Thomson, E. (2015). The development of an amateur boxing simulation protocol. [Doctoral dissertation, University of Chester]. University of Chester Digital Repository.

Thomson, E., & Lamb, K. (2016). The technical demands of amateur boxing: Effect of contest outcome, weight and ability. International Journal of Performance Analysis in Sport, 16(1), 203–215. https://doi.org/10.1080/24748668.2016.11868881

Thomson, E., Lamb, K., & Nicholas, C. (2013). The development of a reliable amateur boxing performance analysis template. Journal of Sports Sciences, 31(5), 516–528. https://doi.org/https://doi.org/10.1080/24748668.2007.11868388

World Boxing Association. (2022). https://www.wbaboxing.com/wba-ranking

World Boxing Council. (2022). https://wbcboxing.com/wbceng/ratings

World Boxing Organization. (2022). https://wboboxing.com/rankings/

Downloads

Published

2023-09-15

How to Cite

Puchol, V., Sanchez Fuentes, J. A., Albesa Albiol, L., & Caparrós Pons, T. (2023). Professional male modern boxing: An analysis of activity profile by category. Retos, 50, 987–994. https://doi.org/10.47197/retos.v50.99923

Issue

Section

Original Research Article