Diagnóstico precoz de accidentes cerebrovasculares en atletas de halterofilia en tiempo real utilizando sensores no invasivos de última generación

Autores/as

  • Azhar Tursynova https://orcid.org/0000-0002-1918-065X
  • Bolganay Kaldarova South Kazakhstan Pedagogical University named after Ozbekali Zhanibekov

DOI:

https://doi.org/10.47197/retos.v61.110267

Palabras clave:

medicina deportiva, monitoreo de la salud del atleta, tecnología vestible, monitoreo en tiempo real, tecnología diagnóstica, internet de las cosas médicas (iomt), sensores no invasivos, eficiencia temporal, conveniencia del usuario, diagnósticos de precisión

Resumen

Este artículo de investigación presenta una investigación sobre la eficacia de una nueva tecnología de diagnóstico diseñada para el monitoreo en tiempo real de atletas de levantamiento de pesas, centrándose en la precisión, la eficiencia temporal y la comodidad del usuario en comparación con los sistemas de diagnóstico tradicionales. El estudio introduce un sistema avanzado de sensores no invasivos, integrado en un marco cohesivo del Internet de las Cosas Médicas (IoMT), que facilita la evaluación inmediata y precisa de los parámetros de salud de los atletas. Para probar empíricamente los beneficios de esta nueva tecnología, se llevó a cabo un experimento pedagógico que involucraba dos grupos distintos: un grupo experimental que utilizó la tecnología propuesta para chequeos médicos y un grupo de control que continuó con los métodos de diagnóstico tradicionales. Cada grupo consistió en 30 atletas, y los resultados se midieron en tres dimensiones: la precisión de los resultados diagnósticos, el tiempo empleado para los chequeos médicos y la comodidad del equipo reportada por los usuarios. Los hallazgos indican que la tecnología propuesta no solo mejora significativamente la precisión de los diagnósticos de salud sino que también reduce el tiempo requerido para los exámenes médicos, aumentando así la eficiencia general. Además, las puntuaciones más altas de comodidad reportadas por el grupo experimental sugieren una mayor satisfacción y usabilidad del usuario. Estos resultados demuestran el potencial del sistema de diagnóstico propuesto para transformar el monitoreo de la salud de los atletas al proporcionar evaluaciones médicas más precisas, eficientes y fáciles de usar, sugiriendo un avance significativo en la aplicación de tecnologías avanzadas en la medicina deportiva.

Citas

Zhao, J., Feng, S., Cao, X., & Zheng, H. (2024). Wearable sensors for monitoring vital signals in sports and health: progress and perspective. Sensor Review, 44(3), 301-330.

ROGGIO, F., CAPPUCCIO, G., PALMA, A., & MUSUMECI, G. (2024). Advancements in Non-Invasive Screening Techniques for Human Posture and Musculoskeletal Disorders.

Kazanskiy, N. L., Khonina, S. N., & Butt, M. A. (2024). A review on flexible wearables-Recent developments in non-invasive continuous health monitoring. Sensors andVitazkova, D., Foltan, E., Kosnacova, H., Micjan, M., Donoval, M., Kuzma, A., ... & Vavrinsky, E. (2024). Advances in respiratory monitoring: a comprehensive review of wearable and remote technologies. Biosensors, 14(2), 90. Actuators A: Physical, 114993.

Kim, D., Min, J., & Ko, S. H. (2024). Recent developments and future directions of wearable skin biosignal sensors. Advanced Sensor Research, 3(2), 2300118.

Tursynova, A., Omarov, B., Sakhipov, A., & Tukenova, N. (2022). Brain Stroke Lesion Segmentation Using Computed Tomography Images based on Modified U-Net Model with ResNet Blocks. International Journal of Online & Biomed-ical Engineering, 18(13).

Yough, M. (2023). Advancing Medical Technology for Motor Impairment Rehabilitation: Tools, Protocols, and Devices (Doctoral dissertation, West Virginia University).

Carmona, G. (2024). Selective fast fiber damage after leg press exercise leading to failure: a pole vaulter case report. Retos, 51, 1375–1380. https://doi.org/10.47197/retos.v51.98084

Sureja, N., Mehta, K., Shah, V., & Patel, G. (2023). Machine learning in wearable healthcare devices. In Machine Learn-ing for Advanced Functional Materials (pp. 281-303). Singapore: Springer Nature Singapore.

Chen, Z., & Dai, X. (2024). Utilizing AI and IoT Technologies for Identifying Risk Factors in Sports. Heliyon.

Le, T. (2020). The NeuroGeneration: The New Era in Brain Enhancement That Is Revolutionizing the Way We Think, Work, and Heal. BenBella Books.

Joshy, P. V., & Menaka, R. (2024). Neuro-Inspired Spiking Classifier for Trajectory-Optimized Diastasis Recti Rehabili-tation with Wearable IMU Sensors (June 2024). IEEE Access.

da Costa Santos, C. M. S. (2023). Longitudinal Changes in Force Production of Young Competitive Swimmers: Assess-ment Tools for Training Control and Optimization (Doctoral dissertation, Universidade da Beira Interior (Portugal)).

Faisal, A. I., Mondal, T., Cowan, D., & Deen, M. J. (2022). Characterization of knee and gait features from a wearable tele-health monitoring system. IEEE Sensors Journal, 22(6), 4741-4753.

Jeon, D. (2023). Differences in Gait Patterns and Lower Extremity Muscle Properties across Skill Levels of Ballet Danc-ers Using AI-Based, Markerless-Driven Musculoskeletal Modeling and Ultrasonography (Doctoral dissertation, Uni-versity of Miami).

Bădescu, D., Zaharie, N., Stoian, I., Bădescu, M., & Stanciu, C. (2022). A narrative review of the link between sport and technology. Sustainability, 14(23), 16265.

Audisio, A. (2024). Tracking the Body Center of Mass during simulated daily activities: a sensor fusion approach with barometric and inertial data (Doctoral dissertation, Politecnico di Torino).

Lee, J., Kwon, K., Soltis, I., Matthews, J., Lee, Y., Kim, H., ... & Yeo, W. H. (2023). Intelligent upper-limb exoskele-ton using deep learning to predict human intention for sensory-feedback augmentation. arXiv preprint arXiv:2309.04655.

Lambert Cause, J. (2022). Unraveling the contact force impact on the complex multi-wavelength PPG signal morpholo-gy at different vascular depths. Lambert Cause, Joan; Sole Morillo, Angel; da Silva, Bruno; Stiffens, Johan; Garcia-Naranjo, Juan Carlos.

Solikah, N. L., Apriantono, T. ., Ferryanto, F., Nurhasan, N., Wiyono, A., Firmansyah, A., Widodo, A., Putro, A. B., & Prianto, B. A. (2024). Measuring shoulder range of motion to diagnose shoulder injury among weightlifters: a study in athletes with and without shoulder injury. Retos, 59, 355–359. https://doi.org/10.47197/retos.v59.103360

Mateluna Núñez, C. A., Zavala-Crichton, J. P., Monsalves-Álvarez, M., Olivares-Arancibia, J., & Yáñez-Sepúlveda, R. (2022). Effects of weightlifting training on sprint, jump and change of direction performance in athletes: A systematic review: A systematic review. Retos, 44, 464–476. https://doi.org/10.47197/retos.v44i0.88670

Gupta, B. K., Koirala, T. K., Rai, J., Panda, B., & Bhoi, A. K. (2023). A Review of Brain-Computer Interface (BCI) System: Advancement and Applications. Enabling Person-Centric Healthcare Using Ambient Assistive Technology: Personalized and Patient-Centric Healthcare Services in AAT, 199-226.

Omarov, B., Batyrbekov, A., Suliman, A., Omarov, B., Sabdenbekov, Y., & Aknazarov, S. (2020, November). Electron-ic stethoscope for detecting heart abnormalities in athletes. In 2020 21st International Arab Conference on Infor-mation Technology (ACIT) (pp. 1-5). IEEE.

Sethi, D., Bharti, S., & Prakash, C. (2022). A comprehensive survey on gait analysis: History, parameters, approaches, pose estimation, and future work. Artificial Intelligence in Medicine, 129, 102314.

Maguluri, L. P., Vinya, V. L., Goutham, V., Uma Maheswari, B., Kumar, B. K., Musthafa, S., ... & Munjal, N. (2023). Unravelling the gait and balance: A novel approach for detecting depression in young healthy individuals. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-15.

Altayeva, A., Omarov, B., & Im Cho, Y. (2018, January). Towards smart city platform intelligence: PI decoupling math model for temperature and humidity control. In 2018 IEEE International Conference on Big Data and Smart Compu-ting (BigComp) (pp. 693-696). IEEE.

Mohammadi, A. T., Sanjarian, S., Tehrany, P. M., Khorram, R., Vafadar, R., Mohseni, H., ... & Vaseghi, S. (2023). Cutting-Edge Advances in Surgery. Nobel Sciences.

Suri, J. S., Bhagawati, M., Paul, S., Protogerou, A. D., Sfikakis, P. P., Kitas, G. D., ... & Saba, L. (2022). A powerful paradigm for cardiovascular risk stratification using multiclass, multi-label, and ensemble-based machine learning paradigms: A narrative review. Diagnostics, 12(3), 722.

Ramasubramanian, B., Sundarrajan, S., Rao, R. P., Reddy, M. V., Chellappan, V., & Ramakrishna, S. (2022). Novel low-carbon energy solutions for powering emerging wearables, smart textiles, and medical devices. Energy & Envi-ronmental Science, 15(12), 4928-4981.

Syed, S. A., Zahid, H., Bullo, S., Shams, S., Tanvir, S., Zaidi, S. J. H., & Nasim, S. (2023). Machine Learning Tech-niques Applied in Surface Emg Detection-A Systematic Review. Pakistan Journal of Biotechnology, 20(02), 225-237.

Zhou, H., Wang, D., Yu, Y., & Zhang, Z. (2023). Research progress of human–computer interaction technology based on gesture recognition. Electronics, 12(13), 2805.

Murshed, R. U., Istiak, M. A., Rahman, M. T., Ashraf, Z. B., Ullah, M. S., & Saquib, M. (2023). A CNN based multi-faceted signal processing framework for heart rate proctoring using millimeter wave radar ballistocardiography. Ar-ray, 20, 100327.

Taj, I., & Zaman, N. (2022). Towards industrial revolution 5.0 and explainable artificial intelligence: Challenges and opportunities. International Journal of Computing and Digital Systems, 12(1), 295-320.

Omarov, B., Omarov, B., Shekerbekova, S., Gusmanova, F., Oshanova, N., Sarbasova, A., ... & Sultan, D. (2019). Ap-plying face recognition in video surveillance security systems. In Software Technology: Methods and Tools: 51st In-ternational Conference, TOOLS 2019, Innopolis, Russia, October 15–17, 2019, Proceedings 51 (pp. 271-280). Springer International Publishing.

Kazemi, N., & Musilek, P. (2023). Resolution enhancement of microwave sensors using super-resolution generative adversarial network. Expert Systems with Applications, 213, 119252.

Das, A., Paul, R., Nag, A., & Das, B. (2024). A Study of Cloud of Things Enabled Machine Learning-Based Smart Health Monitoring System. In Sustainability in Industry 5.0 (pp. 156-176). CRC Press.

Mridha, M. F., Das, S. C., Kabir, M. M., Lima, A. A., Islam, M. R., & Watanobe, Y. (2021). Brain-computer interface: Advancement and challenges. Sensors, 21(17), 5746.

Celik, A., & Eltawil, A. M. (2022). The internet of bodies: The human body as an efficient and secure wireless channel. IEEE Internet of Things Magazine, 5(3), 114-120.

Kumar, G. K., Bangare, M. L., Bangare, P. M., Kumar, C. R., Raj, R., Arias-Gonzáles, J. L., ... & Mia, M. S. (2024). Internet of things sensors and support vector machine integrated intelligent irrigation system for agriculture industry. Discover Sustainability, 5(1), 6.

Thakur, R., Borkar, P., & Wairagade, M. (2024). AI and ML in the Treatment of Cardiovascular Diseases. In Computa-tional Approaches in Biomaterials and Biomedical Engineering Applications (pp. 123-139). CRC Press.

Paneru, B., Paneru, B., & Sapkota, S. C. (2024). EEG Right & Left Voluntary Hand Movement-based Virtual Brain-Computer Interfacing Keyboard with Machine Learning and a Hybrid Bi-Directional LSTM-GRU Model. arXiv pre-print arXiv:2409.00035.

Firuzi, R., Ahmadyani, H., Abdi, M. F., Naderi, D., Hassan, J., & Bokani, A. (2022). Decoding Neural Signals with Computational Models: A Systematic Review of Invasive BMI. arXiv preprint arXiv:2211.03324.

Talpur, M. S. H., Abro, A. A., Ebrahim, M., Kandhro, I. A., Manickam, S., Arfeen, S. U., ... & Uddin, M. (2024). Illuminating Healthcare Management: A Comprehensive Review of IoT-Enabled Chronic Disease Monitoring. IEEE Access.

Zhang, X., Wu, D., Li, H., Fang, Y., Xiong, H., & Li, Y. (2022). Early Diagnosis of Intracranial Internal Carotid Artery Stenosis Using Extracranial Hemodynamic Indices from Carotid Doppler Ultrasound. Bioengineering, 9(9), 422.

Zhumayeva, M., Dautov, K., Hashmi, M., & Nauryzbayev, G. (2023). Wireless energy and information transfer in WBAN: A comprehensive state-of-the-art review. Alexandria Engineering Journal, 85, 261-285.

Mazzeo, P. L., Frontoni, E., Sclaroff, S., & Distante, C. (Eds.). (2022). Image Analysis and Processing. ICIAP 2022 Workshops: ICIAP International Workshops, Lecce, Italy, May 23–27, 2022, Revised Selected Papers, Part I (Vol. 13373). Springer Nature.

Weerarathna, I. N., & Luharia, A. (2024). Exploring the nexus of biomedical science and robots for enhanced clinical outcomes--a literature review. AIMS Bioengineering, 11(1).

McDevitt, S., Hernandez, H., Hicks, J., Lowell, R., Bentahaikt, H., Burch, R., ... & Anderson, B. (2022). Wearables for biomechanical performance optimization and risk assessment in industrial and sports applications. Bioengineering, 9(1), 33.

Seshadri, D. R., Thom, M. L., Harlow, E. R., Gabbett, T. J., Geletka, B. J., Hsu, J. J., ... & Voos, J. E. (2021). Weara-ble technology and analytics as a complementary toolkit to optimize workload and to reduce injury burden. Frontiers in sports and active living, 2, 630576.

Kovoor, M., Durairaj, M., Karyakarte, M. S., Hussain, M. Z., Ashraf, M., & Maguluri, L. P. (2024). Sensor-enhanced wearables and automated analytics for injury prevention in sports. Measurement: Sensors, 32, 101054.

Descargas

Publicado

2024-12-01

Cómo citar

Tursynova, A., & Kaldarova, B. (2024). Diagnóstico precoz de accidentes cerebrovasculares en atletas de halterofilia en tiempo real utilizando sensores no invasivos de última generación. Retos, 61, 1321–1332. https://doi.org/10.47197/retos.v61.110267

Número

Sección

Artículos de carácter científico: trabajos de investigaciones básicas y/o aplicadas