Pronóstico de lesiones relacionadas con el deporte mediante el uso de dispositivos vestibles y métodos de análisis de datos (Forecasting sports-related injuries using wearable devices and data analysis methods)
DOI:
https://doi.org/10.47197/retos.v58.109162Palabras clave:
tecnología vestible, prevención de lesiones en atletas, monitoreo de datos en tiempo real, ciencia deportiva, análisis de datos biomecánicos, lesiones menores, lesiones graves, ajustes personalizados de entrenamientoResumen
Este estudio investiga la eficacia de la tecnología vestible en la predicción de las tasas de lesiones entre los atletas, centrándose tanto en lesiones menores como en lesiones graves. Durante un período de 20 semanas, 80 estudiantes de cultura física fueron divididos en un grupo experimental, que utilizó dispositivos vestibles para el monitoreo de datos en tiempo real, y un grupo de control que empleó métodos de entrenamiento tradicionales. El estudio utilizó una gama de sensores vestibles para recopilar datos fisiológicos y biomecánicos completos, que fueron analizados utilizando herramientas personalizadas basadas en Python. Los resultados indicaron una reducción significativa en las lesiones menores dentro del grupo experimental, confirmando la hipótesis de que la tecnología vestible puede disminuir la incidencia de lesiones a través de ajustes de entrenamiento personalizados. Sin embargo, el impacto en las lesiones graves no fue estadísticamente significativo, destacando las limitaciones de la tecnología para predecir y prevenir lesiones agudas. Esta investigación subraya el potencial de los dispositivos vestibles para mejorar la seguridad de los atletas a través de percepciones basadas en datos, pero también señala la necesidad de realizar más estudios para comprender y aprovechar completamente la tecnología en la prevención de lesiones más graves. Los hallazgos tienen implicaciones importantes para la ciencia deportiva, sugiriendo un cambio de paradigma hacia regímenes de entrenamiento más integrados tecnológicamente para optimizar los resultados de salud y el rendimiento en las poblaciones atléticas.
Palabras clave: tecnología vestible, prevención de lesiones en atletas, monitoreo de datos en tiempo real, ciencia deportiva, análisis de datos biomecánicos, lesiones menores, lesiones graves, ajustes personalizados de entrenamiento.
Abstract. This study investigates the effectiveness of wearable technology in predicting injury rates among athletes, focusing on both micro and severe injuries. Over a 20-week period, 80 physical culture students were divided into an experimental group, using wearable devices for real-time data monitoring, and a control group employing traditional training methods. The study utilized a range of wearable sensors to collect comprehensive physiological and biomechanical data, which was analyzed using custom Python-based tools. Results indicated a significant reduction in micro injuries within the experimental group, affirming the hypothesis that wearable technology can decrease injury incidence through personalized training adjustments. However, the impact on severe injuries was not statistically significant, highlighting the technology's limitations in predicting and preventing acute injuries. This research underscores the potential of wearable devices to enhance athlete safety through data-driven insights but also points to the need for further studies to fully understand and leverage technology in preventing more serious injuries. The findings have important implications for sports science, suggesting a paradigm shift towards more technologically integrated training regimes to optimize health outcomes and performance in athletic populations.
Keywords: wearable technology, athlete injury prevention, real-time data monitoring, sports science, biomechanical data analysis, micro injuries, severe injuries, personalized training adjustments.
Citas
Reid, H., Ridout, A. J., Tomaz, S. A., Kelly, P., & Jones, N. (2022). Benefits outweigh the risks: a consensus statement on the risks of physical activity for people living with long-term conditions. British journal of sports medicine, 56(8), 427-438.
Davies, M., Lawrence, T., Edwards, A., McKay, C., Lecky, F. E., Stokes, K. A., & Williams, S. (2024). Sport-related major trauma incidence in young people and adults in England and Wales: a national registry-based study. Injury pre-vention, 30(1), 1-8.
Omarov, B., Batyrbekov, A., Suliman, A., Omarov, B., Sabdenbekov, Y., & Aknazarov, S. (2020, November). Electron-ic stethoscope for detecting heart abnormalities in athletes. In 2020 21st International Arab Conference on Infor-mation Technology (ACIT) (pp. 1-5). IEEE.
Kárason, H., Ritrovato, P., Maffulli, N., Boccaccini, A. R., & Tortorella, F. (2024). Wearable approaches for non-invasive monitoring of tendons: A scoping review. Internet of Things, 101199.
Tursynova, A., Omarov, B., Tukenova, N., Salgozha, I., Khaaval, O., Ramazanov, R., & Ospanov, B. (2023). Deep learning-enabled brain stroke classification on computed tomography images. Comput. Mater. Contin, 75(1), 1431-1446.
Sprouse, B., Chandran, A., Rao, N., Boltz, A. J., Johnson, M., Hennis, P., & Varley, I. (2024). Injury and illness surveil-lance monitoring in team sports: a framework for all. Injury epidemiology, 11(1), 23.
Tursynova, A., Omarov, B., Sakhipov, A., & Tukenova, N. (2022). Brain Stroke Lesion Segmentation Using Computed Tomography Images based on Modified U-Net Model with ResNet Blocks. International Journal of Online & Biomed-ical Engineering, 18(13).
Kim, J., Porciuncula, F., Yang, H. D., Wendel, N., Baker, T., Chin, A., ... & Walsh, C. J. (2024). Soft robotic apparel to avert freezing of gait in Parkinson’s disease. Nature medicine, 30(1), 177-185.
Thomas, C. (2023). Assessment of Physical Qualities Associated with Multidirectional Speed. Multidirectional Speed in Sport, 144-167.
Okilanda, A. ., Ihsan, N. ., Arnando, M., Hasan, B., Ishak, M., Mohamed Shapie, M. N. ., Tulyakul, S. ., Duwarah, T., Ahmed, M., & Syaputri, W. (2024). Acelerar el rendimiento: el impacto del entrenamiento interválico con resisten-cia ponderada en la mejora de la velocidad en estudiantes universitarios (Revving up performance: the impact of in-terval training with weighted resistance on speed enhancement in university students). Retos, 58, 469–476. https://doi.org/10.47197/retos.v58.106752
Qi, Y., Sajadi, S. M., Baghaei, S., Rezaei, R., & Li, W. (2024). Digital technologies in sports: Opportunities, challenges, and strategies for safeguarding athlete wellbeing and competitive integrity in the digital era. Technology in Society, 102496.
Marco, M. K. D., Goods, D. P., Baldwin, D. K., Hiscock, D. D., & Scott, A. P. B. (2024). Resistance Training Pre-scription For Athletes During Periods Of Planned De-Loading: A Survey Of Strength And Conditioning Coaches. Journal of Clinical Exercise Physiology, 13(s2), 355-355.
Kusmiyati, K., Setiawati, H., Setijono, H., Soedjatmiko, S., Kristiyanto, A., & Suryadi, D. (2024). Autoeficacia de los profesores de educación física: ¿cómo contribuye a la consecución de los objetivos generales del deporte nacional? (Self-efficacy of physical education teachers: how does it contribute to achieving the overarching objectives of nation-al sport?). Retos, 58, 546–551. https://doi.org/10.47197/retos.v58.108159
Nagorna, V., Mytko, A., Borysova, O., Potop, V., Petrenko, H., Zhyhailova, L., ... & Lorenzetti, S. (2024). Innovative technologies in sports games: A comprehensive investigation of theory and practice. Journal of Physical Education and Sport, 585-596.
Moral Moreno, L., Flores Ferro, E. ., & Maureira Cid, F. . (2024). Nivel de actividad física en estudiantes universitarios: un estudio comparativo España-Chile (Physical activity level in university students: a Spain-Chile comparative study). Retos, 56, 188–199. https://doi.org/10.47197/retos.v56.102969
Cleary Jr, C. J. (2024). Evaluation of Body Composition, Skeletal Muscle Size, and Musculoskeletal Performance in Individuals With and Without a Previous Anterior Cruciate Ligament Reconstruction Surgery (Doctoral dissertation, University of Kansas).
Kumar, G. K., Bangare, M. L., Bangare, P. M., Kumar, C. R., Raj, R., Arias-Gonzáles, J. L., ... & Mia, M. S. (2024). Internet of things sensors and support vector machine integrated intelligent irrigation system for agriculture industry. Discover Sustainability, 5(1), 6.
Neal, B. S., Bramah, C., McCarthy-Ryan, M. F., Moore, I. S., Napier, C., Paquette, M. R., & Gruber, A. H. (2024). Using wearable technology data to explain recreational running injury: A prospective longitudinal feasibility study. Physical Therapy in Sport, 65, 130-136.
Rebelo, A., Martinho, D. V., Valente-dos-Santos, J., Coelho-e-Silva, M. J., & Teixeira, D. S. (2023). From data to ac-tion: a scoping review of wearable technologies and biomechanical assessments informing injury prevention strategies in sport. BMC sports science, medicine and rehabilitation, 15(1), 169.
Ribeiro Neto, A., Ferreira Magalhães, L. ., Gotti Alves, R. R. ., Flor Bertolini, G. R. ., Moreira Lobato, D. F. ., & Ber-toncello, D. . (2023). Análisis de vídeo bidimensional de sentadilla sobre la cabeza: un estudio preliminar (Two-dimensional video analysis of the overhead squat: a preliminary study). Retos, 50, 50–56. https://doi.org/10.47197/retos.v50.99340
Del-Valle-Soto, C., Briseño, R. A., Valdivia, L. J., & Nolazco-Flores, J. A. (2024). Unveiling wearables: exploring the global landscape of biometric applications and vital signs and behavioral impact. BioData Mining, 17(1), 15.
Yang, G., Hong, J., & Park, S. B. (2024). Wearable device for continuous sweat lactate monitoring in sports: a narrative review. Frontiers in Physiology, 15, 1376801.
Tan, T., Gatti, A. A., Fan, B., Shea, K. G., Sherman, S. L., Uhlrich, S. D., ... & Chaudhari, A. S. (2023). A scoping review of portable sensing for out-of-lab anterior cruciate ligament injury prevention and rehabilitation. NPJ Digital Medicine, 6(1), 46.
Chang, P., Wang, C., Chen, Y., Wang, G., & Lu, A. (2023). Identification of runner fatigue stages based on inertial sensors and deep learning. Frontiers in Bioengineering and Biotechnology, 11, 1302911.
Hannay, W. M., Sliepka, J. M., Parker, K., Sammons, K., Gee, A. O., Kweon, C. Y., & Hagen, M. S. (2024). Limited Return to Preinjury Performance in NCAA Division I American Football Players With Hamstring Injuries. Ortho-paedic Journal of Sports Medicine, 12(5), 23259671241243345.
Rahlf, A. L., Hoenig, T., Stürznickel, J., Cremans, K., Fohrmann, D., Sanchez-Alvarado, A., ... & Hollander, K. (2022). A machine learning approach to identify risk factors for running-related injuries: study protocol for a pro-spective longitudinal cohort trial. BMC sports science, medicine and rehabilitation, 14(1), 75.
Ren, L., Wang, Y., & Li, K. (2024). Real-time sports injury monitoring system based on the deep learning algorithm. BMC medical imaging, 24(1), 122.
Scott, R., James, R., Barnett, C. T., Sale, C., & Varley, I. (2023). Perspectives from research and practice: A survey on external load monitoring and bone in sport. Frontiers in Sports and Active Living, 5, 1150052.
Altayeva, A., Omarov, B., Jeong, H. C., & Cho, Y. I. (2016). Multi-step face recognition for improving face detection and recognition rate. Far East Journal of Electronics and Communications 16(3), pp. 471-491.
Wells, L., Konoval, T., & Bruce, L. (2023). An examination of how and why triathlon coaches use a suite of technologies in their practice. International Journal of Sports Science & Coaching, 18(3), 687-694.
Hardaker, N. J., Hume, P. A., & Sims, S. T. (2024). Differences in injury profiles between female and male athletes across the participant classification framework: a systematic review and meta-analysis. Sports medicine, 1-71.
Anam, K., Setiowati, A., Indardi, N., Irawan, F. A., Pavlović, R., Susanto, N., ... & Setyawan, H. (2024). Functional movement screen score to predict injury risk of sports students: a review of foot shape and body mass index. Peda-gogy of Physical Culture and Sports, 28(2), 124-131.
Keogh, J. A., Waddington, E. E., Masood, Z., Mahmood, S., Palanisamy, A. C., Ruder, M. C., ... & Kobsar, D. (2023). Monitoring lower limb biomechanical asymmetry and psychological measures in athletic populations—A scoping re-view. Scandinavian Journal of Medicine & Science in Sports, 33(11), 2125-2148.
Cheng, R., & Bergmann, J. H. (2022). Impact and workload are dominating on-field data monitoring techniques to track health and well-being of team-sports athletes. Physiological Measurement, 43(3), 03TR01.
Nassis, G., Verhagen, E., Brito, J., Figueiredo, P., & Krustrup, P. (2023). A review of machine learning applications in soccer with an emphasis on injury risk. Biology of sport, 40(1), 233-239.
Darbandi, H., Munsters, C., Parmentier, J., & Havinga, P. (2023). Detecting fatigue of sport horses with biomechanical gait features using inertial sensors. PloS one, 18(4), e0284554.
Finkenzeller, T., Burberg, T., Kranzinger, S., Harbour, E., Snyder, C., Würth, S., & Amesberger, G. (2022). Effects of physical stress in Alpine skiing on psychological, physiological, and biomechanical parameters: an individual approach. Frontiers in Sports and Active Living, 4, 971137.
Omarov, B., Omarov, N., Mamutov, Q., Kissebaev, Z., Anarbayev, A., Tastanov, A., & Yessirkepov, Z. (2024). Exami-nation of the augmented reality exercise monitoring system as an adjunct tool for prospective teacher trainers. Retos: nuevas tendencias en educación física, deporte y recreación, (58), 85-94.
Doskarayev, B., Omarov, N., Omarov, B., Ismagulova, Z., Kozhamkulova, Z., Nurlybaeva, E., & Kasimova, G. (2023). Development of Computer Vision-enabled Augmented Reality Games to Increase Motivation for Sports. International Journal of Advanced Computer Science and Applications, 14(4).
Kazanskiy, N. L., Khonina, S. N., & Butt, M. A. (2024). A review on flexible wearables-Recent developments in non-invasive continuous health monitoring. Sensors and Actuators A: Physical, 114993.
Stessens, L., Gielen, J., Meeusen, R., & Aerts, J. M. (2024). Physical performance estimation in practice: A systematic review of advancements in performance prediction and modeling in cycling. International Journal of Sports Science & Coaching, 17479541241262385.
Zhang, Y., Hu, Y., Jiang, N., & Yetisen, A. K. (2023). Wearable artificial intelligence biosensor networks. Biosensors and Bioelectronics, 219, 114825.
World Health Organization. (2010, May 6). A healthy lifestyle - WHO recommendations. World Health Organisation. https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations.
Caulfield, R., Wiseman, T., Gullick, J., & Ogilvie, R. (2023). Factors preceding occupational distress in emergency nurses: An integrative review. Journal of clinical nursing, 32(13-14), 3341-3360.
Tileubay, S., Yerekeshova, M., Baiganova, A., Janyssova, D., Omarov, N., Omarov, B., & Baiekeyeva, Z. (2024). De-velopment of Deep Learning Enabled Augmented Reality Framework for Monitoring the Physical Quality Training of Future Trainers-Teachers. International Journal of Advanced Computer Science & Applications, 15(3).
Kaldarova, B., Omarov, B., Zhaidakbayeva, L., Tursynbayev, A., Beissenova, G., Kurmanbayev, B., & Anarbayev, A. (2023, February). Applying game-based learning to a primary school class in computer science terminology learning. In Frontiers in Education (Vol. 8, p. 1100275). Frontiers Media SA.
Omarov, B., Narynov, S., & Zhumanov, Z. (2023). Artificial Intelligence-Enabled Chatbots in Mental Health: A System-atic Review. Computers, Materials & Continua, 74(3).
Hawryluk, G. W., & Ghajar, J. (2021). Evolution and impact of the Brain Trauma Foundation guidelines. Neurosurgery, 89(6), 1148-1156.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Retos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores que publican en esta revista están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y garantizan a la revista el derecho de ser la primera publicación de su obra, el cuál estará simultáneamente sujeto a la licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados (Véase The Effect of Open Access) (en inglés).
Esta revista sigue la "open access policy" de BOAI (1), apoyando los derechos de los usuarios a "leer, descargar, copiar, distribuir, imprimir, buscar o enlazar los textos completos de los artículos".
(1) http://legacy.earlham.edu/~peters/fos/boaifaq.htm#openaccess