Criterios de integración de la movilidad aérea urbana en la ciudad
DOI:
https://doi.org/10.37230/CyTET.2024.222.1Palabras clave:
Movilidad aérea urbana, Transporte urbano sostenible, Conectividad urbana / regional, Infraestructura urbana, Planificación urbanaResumen
La movilidad aérea urbana es un concepto novedoso de transporte urbano e interurbano. Esta alternativa emergente de transporte se debe en gran medida al desarrollo de vehículos eléctricos de despegue y aterrizaje vertical, que utilizarán una infraestructura terrestre de soporte muy reducida. La rica literatura que la academia viene generando en los últimos años cubre varias dimensiones de esta temática, salvo la de la (futura) integración de este nuevo sistema de transporte con el sistema de movilidad urbano existente. Por ello, la presente investigación identifica, y propone, algunos criterios de integración, en varias dimensiones o ámbitos (las que se consideran, en principio, las más relevantes), que podrían ser de utilidad para los planificadores urbanos, para que los mismos preparen los escenarios de integración de este nuevo modo de transporte urbano con las redes de transporte y otras infraestructuras de movilidad de la ciudad.
Descargas
Citas
Ahn, B. & Hwang, H.Y. (2022): Design Criteria and accommodating capacity analysis of vertiports for urban air Mobility and its application at Gimpo Airport in Korea. Applied Sciences, 12, 6077, https://doi.org/10.3390/app12126077
AIRBUS (2017): Rethinking urban air mobility. Toulouse, AIRBUS. https://www.airbus.com/en/newsroom/stories/2017-06-rethinking-urban-air-mobility
AIRBUS (2018): Blueprint for the sky. Toulouse, Francia, AIRBUS.
Albalate, D. & Bel, G. (2010): Tourism and urban public transport: Holding demand pressure under supply constraints. Tourism Management, 31(3), pp. 425-433. https://doi.org/10.1016/j.tourman.2009.04.011
Al Haddad, C. & Chaniotakis, E. & Straubinger, A. & Plötner, K. & Antoniou , C. (2020): Factors affecting the adoption and use of urban air mobility. Transportation Research Part A, 132, pp. 696-712, https://doi.org/10.1016/j.tra.29.12.020
Anand, A. & Kaur, H. & Justin, C. & Zaidi, T. & Mavris, D. (2021): A scenario-based evaluation of global urban air mobility demand. AIAA Scitech Forum. https://doi.org/10.2514/6.2021-1516
Antcliff , K. & Moo re, M. & Goodrich, K. (2016): Silicon Valley as an early adopter for on-demand civil VTOL operations. 16th AIAA Aviation Technology, Integration, and Operations Conference. 13-17 June 2016, Washington, D.C., https://doi.org/10.2514/6.2016-3466
Arellano , S. (2020): A Data-and Demand-Based Approach at Identifying Accessible Locations for Urban Air Mobility Stations. Master Thesis. Technical University of Munich.
ASD (2023): Urban air mobility and sustainable development. Brussels, Belgium, Aerospace, Security and Defence Industries Association of Europe.
ASSURE (2022): Urban Air Mobility Study: Safety Standards, Aircraft Certification, and Impact on Market Feasibility and Growth Potentials. Technical Report. Alliance for System Safety of UAS through Research Excellence.
Birrell, S. & Payre, W. & Zdanowicz, K. & Herriotts, P. (2022): Urban air mobility infrastructure design: Using virtual reality to capture user experience within the world’s first urban airport. Applied Ergonomics, 105, 103843, https://doi.org/10.1016/j.apergo.2022.103843
BOEING (2018): Flight path for the future of mobility. http://www.boeing.com/NeXt/common/docs/Boeing_Future_of_Mobility_White%20Paper.pdf
Bosson , C. & Lauderdale, T. (2018): Simulation evaluations of an autonomous urban air mobility network management and separation service. Aviation Technology, Integration, and Operations Conference. June 25-29, 2018, Atlanta (Georgia), https://doi.org/10.2514/6.2018-3365
Brelje, B. & Martins, J. (2019): Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches. Progress in Aerospace Sciences, 104, pp. 1-19, https://doi.org/10.1016/j.paerosci.2018.06.004
Brunelli, M. & Ditta, C. & Postorino, M. (2023): New infrastructures for Urban Air Mobility systems: A systematic review on vertiport location and capacity. Journal of Air Transport Management, 112, 102460, https://doi.org/10.1016/j.jairtraman.2023.102460
Bulanowski, K. & Gillis, D. & Fakhraian, E. & Lima, S. & Semanjski, I. (2022): AURORA—Creating Space for Urban Air Mobility in Our Cities. 6th Conference on Sustainable Urban Mobility. August 31- September 2, 2022, Skiathos Island (Greece).
Chaniotakis, E. & Efthymiou, D. & Antoniou, C. (2020): Data aspects of the evaluation of demand for emerging transportation systems. Demand for Emerging Transportation Systems, pp. 77-99, https://doi.org/10.1016/B978-0-12-815018-4.00005-X
Cohen, M. (1996): The Vertiport as an Urban Design Problem. SAE Technical Paper 965523. https://doi.org/10.4271/965523
Cohen, A. & Guan, J. & Beamer, M. & Dittoe, R. & Mokhtarimousavi, S. (2020): Reimagining the Future of Transportation with Personal Flight: Preparing and Planning for Urban Air Mobility. Proceeding of 99th Annual Meeting Transportation Research Board. https://doi.org/10.7922/G2TT4P6H
Cohen, A. & Shaheen, S. (2021): Urban Air Mobility: Opportunities and Obstacles. Working Paper. Transportation Sustainability Research Center, University of California (Berkeley).
Cohen, A. & Shaheen, S. & Farrar, E. (2021): Urban Air Mobility: History, Ecosystem, Market Potential, and Challenges. IEEE Transactions on Intelligent Transportation Systems, 22(9), pp. 6074-6087, https://doi.org/10.1109/TITS.2021.3082767
Cokorilo , O. (2020): Urban Air Mobility: Safety Challenges. Transportation Research Procedia, 45, 21–29.
CORUS-XUAM (2023): CORUS-XUAM Project. https://corus-xuam.eu/
Cotton , W. & Wing, D. (2018): Airborne trajectory management for urban air mobility. Aviation Technology, Integration, and Operations Conference. June 25-29, 2018, Atlanta (Georgia), https://doi.org/10.2514/6.2018-3674
Daskilewicz, M. & German, B. & Warren, M. & Garrow, L. & Boddupalli, S. & Douthat, T. (2018): Progress in Vertiport Placement and Estimating Aircraft Range Requirements for eVTOL Daily Commuting. 2018 Aviation Technology, Integration, and Operations Conference. June 25-29, 2018, Atlanta, Georgia. https://doi.org/10.2514/6.2018-2884
Díaz Olariaga, O. (2018). Análisis de mitigación de ruido aeroportuario. El caso del Aeropuerto Internacional de Bogotá-El Dorado (Colombia). Ciudad y Territorio Estudios Territoriales, 50(197), 557–576. https://recyt.fecyt.es/index.php/CyTET/article/view/76682/46998
Di Vito, V. (2023): Operational Concepts for Urban Air Mobility deployment in the next decades. Journal of Physics: Conference Series, 2526, 012098. https://doi.org/10.1088/1742-6596/2526/1/012098
EASA (2021): Study on the societal acceptance of Urban Air Mobility in Europe. Cologne, Germany: European Union Aviation Safety Agency. EASA (2022): Vertiports. Cologne, Germany, European Union Aviation Safety Agency.
Eißfeldt, H. (2020): Sustainable urban air mobility supported with participatory noise sensing. Sustainability, 12(8), 3320, https://doi.org/10.3390/su12083320
European Commission (2019): CORUS (Concept of Operation for EuRopean UTM Systems) Project. https://cordis.europa.eu/project/id/763551
European Commission (2023): Towards sustainable urban air mobility. Horizon 2020 Programme. https://cordis.europa.eu/programme/id/H2020_MG-3-6-2020
FAA (2022): Memorandum. Vertiport Design. Washington DC, USA, Federal Aviation Administration, U.S. Department of Transportation.
FAA (2023): Urban Air Mobility (UAM): Concept of Operations. Washington DC, USA, Federal Aviation Administration, U.S. Department of Transportation.
Fadhil, D. (2018): A GIS-based analysis for selecting ground infrastructure locations for urban air mobility. Master Thesis. Technical University of Munich.
Fredericks, W. & Sripad, S. & Bower, G. & Viswanathan, V. (2018): Performance metrics required of nextgeneration batteries to electrify vertical takeoff and landing (VTOL) aircraft. ACS Energy Letters, 3(12), pp. 2989-2994, https://doi.org/10.1021/acsenergylett.8b02195
Fu, M. & Rothfeld, R. & Antoniou, C. (2019): Exploring preferences for transportation modes in an Urban Air Mobility environment: Munich case study. Transportation Research Record. https://doi.org/10.1177/0361198119843858
Garrow, L. & German, B. & Leonard, C. (2021): Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transportation Research Part C, 132, 103377, https://doi.org/10.1016/j.trc.2021.103377
Geng, B. & Bao, H. & Liang, Y. (2015): A study of the effect of a high-speed rail station on spatial variations in housing price based on the hedonic model. Habitat International, 49, pp. 333-339. https://doi.org/10.1016/j.habitatint.2015.06.005
German, B. & Daskilewicz, M. & Hamilton, T. & Warren, M. (2018): Cargo Delivery in by Passenger eVTOL Aircraft: A Case Study in the San Francisco Bay Area. 2018 AIAA Aerospace Sciences Meeting. https://doi.org/10.2514/6.2018-2006
Gillis, D. & Petri, M. & Pratelli, A. & Semanjski, I. & Semanjski, S. (2021): Urban Air Mobility: A State of Art Analysis. Computational Science and Its Applications. 21st International Conference. September 13–16, 2021, Cagliari (Italy).
Graydon , M. & Neogi, N. & Wasson , K. (2020): Guidance for Designing Safety into Urban Air Mobility: Hazard Analysis Techniques. AIAA Scitech 2020 Forum. 6-10 January 2020, Orlando (FL), https://doi.org/10.2514/6.2020-2099
Gronau, W. & Kagermeier, A. (2007): Key factors for successful leisure and tourism public transport provision. Journal of Transport Geography, 15(2), pp. 127-135. https://doi.org/10.1016/j.jtrangeo.2006.12.008
Helsinki (2023): Study on the Future of Helsinki’s Urban Air Mobility. White Paper. https://mobilitylab.hel.fi/app/uploads/2023/05/2023-05-08-Helsinki-UAMReport-final.pdf
IFAR (2023): Scientific Assessment for Urban Air Mobility (UAM). Montreal, Canada, International Forum for Aviation Research (IFAR).
Krylova, M. (2022): Urban planning requirements for the new air mobility (UAM) infrastructure integration. Master Thesis. Frankfurt University of Applied Sciences, Germany.
Lilium (2020). Designing a scalable vertiport. Gauting, Germany, Lilium GmbH, https://lilium.com/newsroom-detail/designing-a-scalable-vertiport
Lim, E. & Hwang, H. (2019): The selection of vertiport location for on-demand mobility and its application to Seoul metro area. International Journal of Aeronautical and Space Sciences, https://doi.org/10.1007/s42405-018-0117-0
Litman, T. & Steele, R. (2023): Land Use Impacts on Transport. Victoria, Canada, Victoria Transport Policy Institute.
Long, Q. & Ma, J. & Jiang, F. & Webster, C. (2023): Demand analysis in urban air mobility: A literature review. Journal of Air Transport Management, 112, 102436, https://doi.org/10.1016/j.jairtraman.2023.102436
Marmolejo Duarte, C. & Romano Córdoba, J. (2009). La valoración económica social del ruido aeroportuario: un análisis para el entorno residencial del Aeropuerto de Barcelona. Ciudad y Territorio Estudios Territoriales, 41(159), 65–86. https://recyt.fecyt.es/index.php/CyTET/article/view/75907/46314
Mavraj, G. (2022): Systematic review of ground-based infrastructure for the innovative urban air mobility. Transactions on Aerospace Research, 269(4), pp. 1-17 https://doi.org/10.2478/tar-2022-0019
Mineta (2023): Land Use Analysis on Vertiports Based on a Case Study of the San Francisco Bay Area. San José, USA, Mineta Transportation Institute.
MITRE (2018): Urban air mobility landscape report. Bedford, USA, MITRE.
Mueller, E. & Kopardekar, P. & Goodrich, K. (2017): Enabling Airspace Integration for High-Density Mobility Operations. 17th AIAA Aviation Technology, Integration, and Operations Conference. 5-9 June 2017, Denver (Colorado), https://doi.org/10.2514/6.2017- 3086
National Aeronautics and Space Administration, NASA (2018): Urban Air Mobility Market Study. Washington DC, USA, National Aeronautics and Space Administration. https://ntrs.nasa.gov/citations/20190000519
National Aeronautics and Space Administration, NASA (2021): Advanced Air Mobility Project. https://www.nasa.gov/aeroresearch/programs/iasp/aam/description/
National Aeronautics and Space Administration, NASA (2024): NASA Urban Air Mobility (UAM) Reference Vehicles. Washington DC, USA, National Aeronautics and Space Administration. https://sacd.larc.nasa.gov/uam-refs/
Nneji, V. & Stimpson, A. & Cummings, M. & Goodrich, K. (2017): Exploring concepts of operations for on-demand passenger air transportation. 17th AIAA Aviation Technology, Integration, and Operations Conference. 5-9 June 2017, Denver (Colorado), https://doi.org/10.2514/6.2017-3085
ONU (2023): Departamento de Asuntos Económicos y Sociales de las Naciones Unidas. https://www.un.org/en/desa/around-25-billion-more-people-willbe-living-cities-2050-projects-new-un-report
Otte, T. & Metzner, N. & Lipp, J. & Schwienhorst, M. & Solvay, A. & Meisen, T. (2018): User-centered integration of automated air mobility into urban transportation networks. IEEE/AIAA Digital Avionics Systems Conference. https://doi.org/10.1109/DASC.2018.8569820
Perperidou , D. & Kirgiafinis, D. (2022): Urban Air Mobility (UAM) Integration to Urban Planning. 6th Conference on Sustainable Urban Mobility. August 31–September 2, 2022, Skiathos Island (Greece).
Ploetner, K. (2020): Long-term application potential of urban air mobility complementing public transport: an upper Bavaria example. CEAS Aeronautical Journal, 11(4), pp. 991–1007. https://doi.org/10.1007/s13272-020-00468-5
Polaczyk, N. & Trombino, E. & Wei, P. & Mitici, M. (2019): A review of current technology and research in urban on-demand air mobility applications. 8th Biennial Autonomous VTOL Technical Meeting and 6th Annual Electric VTOL Symposium. Jan. 28-Feb. 1, 2019, Mesa (USA).
Pons Prats, J. & Zivojinovic, T. & Kuljanin, J. (2022): On the understanding of the current status of urban air mobility development and its future prospects: Commuting in a flying vehicle as a new paradigm. Transportation Research Part E, 166, 102868, https://doi.org/10.1016/j.tre.2022.102868
Porsche Consulting (2021): The economics of vertical mobility. Stuttgart, Germany, Porsche Consulting.
Preis, L. (2021): Quick Sizing, Throughput Estimating and Layout Planning for VTOL Aerodromes – A Methodology for Vertiport Design. AIAA Aviation Forum. August 2-6, 2021. https://doi.org/10.2514/6.2021-2372
Pukhova, A. & Llorca, C. & Moreno, A. & Staves, C. & Zhang, Q. & Moeckel, R. (2021): Flying taxis revived: Can Urban air mobility reduce road congestion? Journal of Urban Mobility, 1, 100002, https://DOI.org/10.1016/j.urbmob.2021.100002
Rajendran, S. & Zack, J. (2019): Insights on strategic air taxi network infrastructure locations using an iterative constrained clustering approach. Transportation Research Part E, 128, pp. 470–505. https://doi.org/10.1016/j.tre.2019.06.003
Rath, S. & Chow, J. (2022): Air taxi skyport location problem with single-allocation choice-constrained elastic demand for airport access. Journal of Air Transport Management, 105, 102294. https://doi.org/10.1016/j.jairtraman.2022.102294
Rautray, P. & Mathew, D. & Eisenbart, B. & Kuys, J. (2022): Understanding Working Scenarios of Urban Air Mobility. International Design Conference - Design 2022. https://doi.org/10.1017/pds.2022.58
Schweiger, K. & Preis, L. (2022): Urban Air Mobility: systematic review of scientific publications and regulations for vertiport design and operations. Drones, 6, 179, https://doi.org/10.3390/drones6070179
Schweiger, K. & Knabe, F. & Korn, B. (2022): An exemplary definition of a vertidrome’s airside concept of operations. Aerospace Science and Technology, 125, 107144, https://doi.org/10.1016/j. ast.2021.107144
Smirnov, A. & Smolokurov, E. & Bolshakov, R. & Parshin, V. (2023): Problems and prospects for the development of urban air mobility on the basis of unmanned transport systems. Transportation Research Procedia, 68, pp. 151-159.
Straubinger, A. (2019): Policies addressing possible urban air mobility market distortions – a first discusión. Transportation Research Procedia, 41, pp. 64-66.
Straubinger, A. & Rothfeld, R. (2018): Identification of relevant aspects for personal air transport system integration in urban mobility modelling. Proceedings of 7th Transport Research Arena TRA, 212, pp. 1-10, https://doi.org/10.5281/zenodo.1446077
Straubinger, A. & Rothfeld, R. & Shamiyeh, M. & Büchter, K. & Kaiser, J. & Plötner, K. (2020): An overview of current research and developments in urban air mobility–setting the scene for UAM introduction. Journal of Air Transport Management, 87, 101852, https://doi.org/10.1016/j.jairtraman.2020.101852
Straubinger, A. & Michelmann, J. & Biehle, T. (2021): Business model options for passenger urban air mobility. CEAS Aeronautical Journal, 12, pp. 361-380, https://doi.org/10.1007/s13272-021-00514-w
Syed, N. (2017): Preliminary Considerations for ODM Air Traffic Management based on Analysis of Commuter Passenger Demand and Travel Patterns for the Silicon Valley Region of California. 17th AIAA Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2017-3082
Takacs, A. & Haidegger, T. (2022): Infrastructural requirements and regulatory challenges of a sustainable Urban Air Mobility ecosystem. Buildings, 12, 747, https://doi.org/10.3390/buildings12060747
Taylor, M. & Saldanli, A. & Park, A. (2020): Design of a vertiport design tool. 2020 Integrated Communications Navigation and Surveillance Conference (ICNS). https://doi.org/10.1109/ICNS50378.2020.9222989
Thipphavon g, D. (2018): Urban Air Mobility Airspace Integration Concepts and Considerations. Aviation Technology, Integration, and Operations Conference. June 25-29, 2018, Atlanta (Georgia), USA.
Torens, C. (2021): HorizonUAM: Safety and Security Considerations for Urban Air Mobility. AIAA Aviation Forum. August 2-6, 2021, https://doi.org/10.2514/6.2021-3199
U-ELCOME (2023): U-Elcome Project. https://u-elcome.eu/
UBER ELEVATE (2016): Fast-forwarding to a future of on-demand urban air transportation. https://evtol.news/__media/PDFs/UberElevateWhitePaper Oct2016.pdf
UIC2-UAM (2021): Urban Air Mobility and Sustainable Urban Mobility Planning – Practitioner Briefing. Brussels, Belgium, European Commission.
Vascik, P. & Hansman, R. (2017): Evaluation of key operational constraints affecting on-demand mobility for aviation in the Los Angeles basin: ground infrastructure, air traffic control and noise. 17th AIAA Aviation Technology, Integration, and Operations Conference. 5-9 June 2017, Denver (Colorado), https://doi.org/10.2514/6.2017-3084
Vascik, P. & Hansman, R. (2019): Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors. AIAA Scitech 2019 Forum. 7-11 January 2019, San Diego (California). https://doi.org/10.2514/6.2019-0526
Vattapparamban, E. & Güvenc, I. & Yurekli, A. & Akkaya, K. & Uluagac, S. (2016): Drones for smart cities: Issues in cybersecurity, privacy, and public safety. 2016 International Wireless Communications and Mobile Computing Conference (IWCMC). https://doi.org/10.1109/IWCMC.2016.7577060
Wang, R. & Ye, L. & Chen, L. (2019): The impact of high-speed rail on housing prices: Evidence from China’s prefecture-level cities. Sustainability, 11(13), 3681. https://doi.org/10.3390/su11133681
Wang, L. & Deng, X. & Gui, J. & Jiang, P. & Zeng, F. & Wan, S. (2023): A review of Urban Air Mobilityenabled intelligent transportation systems: mechanisms, applications and challenges. Journal of Systems Architecture, 141, 102902, https://doi.org/10.1016/j.sysarc.2023.102902
Willey, L. & Salmon, J. (2021): A method for urban air mobility network design using hub location and subgraph isomorphism. Transportation Research Part C, 125, 102997, https://doi.org/10.1016/j.trc.2021.102997
Yedavall i, P. & Moo berry, J. (2019): An Assessment of Public Perception of Urban Air Mobility (UAM). Airbus UTM. https://www.airbus.com/sites/g/files/jlcbta136/files/2022-07/Airbus-UTM-publicperception-study%20-urban-air-mobility.pdf
Zeiser, H. (2019): Security aspects of Urban Air Mobility. Are we prepared? Civitas Forum 2019. 2-4 October 2019, Graz (Austria).
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Oscar Díaz Olariaga
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Sin perjuicio de lo dispuesto en la legislación vigente sobre Propiedad Intelectual, y conforme a la misma, el/la los/las autor/a/es/as que publiquen en CyTET cede/n a título gratuito, de modo no exclusivo y sin límite temporal al Ministerio de Transportes, Movilidad y Agenda Urbana los derechos para difundir, reproducir, comunicar y distribuir en cualquier formato actual o futuro, en papel o electrónico, la versión original o derivada de su obra bajo licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional (CC BY-NC-ND 4.0), así como para incluir o ceder a terceros la inclusión de su contenido en índices, repositorios y bases de datos nacionales e internacionales, con referencia y reconocimiento en todo caso de la autoría del mismo.
Además, al realizar el envío, el/la los/las autor/a/es/as declara/n que se trata de un trabajo original en el que se reconocen las fuentes que han sido utilizadas en su estudio, comprometiéndose a respetar la evidencia científica y a no modificar los datos originales para verificar o refutar una hipótesis de partida; que el contenido esencial del mismo no ha sido publicado previamente ni se publicará en ninguna otra obra o revista mientras esté en proceso de evaluación en la revista CyTET; y que no se ha remitido simultáneamente a otra publicación.
Los autores deben firmar un Formulario de Cesión de Derechos, que les será enviado desde la Secretaría de CyTET una vez se acepte su artículo para ser publicado.
Con el objetivo de favorecer la difusión del conocimiento, CyTET se adhiere al movimiento de revistas de Open Access (OA) y entrega la totalidad de sus contenidos a diversos índices, repositorios y bases de datos nacionales e internacionales bajo este protocolo; por tanto, la remisión de un trabajo para ser publicado en la revista presupone la aceptación explícita por parte del autor/a de este método de distribución.
Se anima a las/os autoras/es a reproducir y alojar sus trabajos publicados en CyTET en repositorios institucionales, páginas web, etc. con la intención de contribuir a la mejora de la transferencia del conocimiento y de la citación de dichos trabajos.