¿Salud para quién? Interseccionalidad y sesgos de la inteligencia artificial para el diagnóstico clínico

Egileak

  • Sua Amaya-Santos Escuela Andaluza de Salud Pública. Granada. España. https://orcid.org/0009-0003-3801-4336
  • Jaime Jiménez-Pernett Escuela Andaluza de Salud pública.Universidad de Granada. Granada. España. https://orcid.org/0000-0002-9894-7133
  • Clara Bermudez-Tamayo Escuela Andaluza de Salud Pública. Granada. España.

##plugins.pubIds.doi.readerDisplayName##:

https://doi.org/10.23938/ASSN.1077

Gako-hitzak:

Inteligencia Artificial

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

##submission.authorBiographies##

##submission.authorWithAffiliation##

  1. Escuela Andaluza de Salud Pública. Granada. España. https://ror.org/05wrpbp17
  2. Jagiellonian University of Krakow. Cracovia. Polonia https://ror.org/03bqmcz70
  3. Universidad de Granada. España. https://ror.org/04njjy449

##submission.authorWithAffiliation##

  1. Escuela Andaluza de Salud Pública. Granada. España. https://ror.org/05wrpbp17
  2. Universidad de Granada. España. https://ror.org/04njjy449

##submission.authorWithAffiliation##

  1. Escuela Andaluza de Salud Pública. Granada. España. https://ror.org/05wrpbp17
  2. Universidad de Granada. España. https://ror.org/04njjy449
  3. Instituto de Investigación Biosanitaria ibs.GRANADA. Granada. España. https://ror.org/026yy9j15
  4. CIBER de Epidemiología y Salud Pública (CIBERESP). España. https://ror.org/050q0kv47

Erreferentziak

BERMUDEZ-TAMAYO C, JIMENEZ-PERNETT J. Inteligencia artificial para el avance de los sistemas de salud. Posibles aportes y retos. Revista de Derecho de la Seguridad Social Laborum 2022; 4(especial): 401-414. https://revista.laborum.es/index.php/revsegsoc/article/view/641/735

PEIRÓ, S. El futuro de la salud pública tras la pandemia. Una ventana de oportunidad. An Sist Sanit Navar 2023; 46(2): e1045. https://doi.org/10.23938/ASSN.1045

MURPHY K, DI RUGGIERO E, UPSHUR R, WILLISON D, MALHOTRA R, CAI J. Artificial intelligence for good health: a scoping review of the ethics literature. BMC Med Ethics 2021; 22(1):14. https://doi.org/10.1186/s12910-021-00577-8

MILLER, D, BROWN E. Artificial intelligence in medical practice: The question to the answer? Am J Med 2018; 131(2): 129-133. https://doi.org/10.1016/j.amjmed.2017.10.035

CIRILLO D, CATUARA-SOLARZ S, MOREY C, GUNEY E, SUBIRATS L, MELLINO S et al. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ Digit Med 2020; 3: 81. https://doi.org/10.1038/s41746-020-0288-5

MILLER T. Explanation in artificial intelligence: Insights from the social sciences. Artif Intell 2019; 267: 1-38. https://doi.org/10.1016/j.artint.2018.07.007

PALACIOS BAREA MA, BOEREN D, FERREIRA GONCALVES JF. At the intersection of humanity and technology: a technofeminist intersectional critical discourse analysis of gender and race biases in the natural language processing model GPT-3. AI & Soc 2023. https://doi.org/10.1007/s00146-023-01804-z

WILSON Y, WHITE A, JEFFERSON A, DANIS M. Intersectionality in clinical medicine: The need for a conceptual framework. Am J Bioeth 2019; 19(2): 8-19. https://doi.org/10.1080/15265161.2018.1557275

NASIR S, KHAN RA, BAI S. Ethical framework for harnessing the power of AI in healthcare and beyond. IEEE Access 2023; 12: 31014–31035. https://doi.org/10.1109/ACCESS.2024.3369912

ASHOKAN A, HAAS C. Fairness metrics and bias mitigation strategies for rating predictions. Information Processing & Management 2021; 58(5): 102646. https://doi.org/10.1016/j.ipm.2021.102646

GARCÍA MOCHON L, OLRY DE LABRY LIMA A, BERMUDEZ TAMAYO C. Prioritization of non-recommended clinical activities in Primary Care. An Sist Sanit Navar 2017; 40(3): 401-412. https://doi.org/10.23938/ASSN.0120

CISTON S. Intersectional artificial intelligence is essential: Polyvocal, multimodal, experimental methods to save AI. J Sci Technol Arts 2019; 11(2): 3–8. https://doi.org/10.7559/citarj.v11i2.665

O’CONNOR S, LIU H. Gender bias perpetuation and mitigation in AI technologies: challenges and opportunities. AI & Soc 2023. https://doi.org/10.1007/s00146-023-01675-4

BUSLÓN N, CORTÉS A, CATUARA-SOLARZ S, CIRILLO D, REMENTERIA MJ. Raising awareness of sex and gender bias in artificial intelligence and health. Front Glob Womens Health 2023; 4: 970312. https://doi.org/10.3389/fgwh.2023.970312

ABRÀMOFF MD, TARVER ME, LOYO-BERRIOS N, TRUJILLO S, CHAR D, OBERMEYER Z et al. Considerations for addressing bias in artificial intelligence for health equity. NPJ Digit Med 2023; 6: 170. https://doi.org/10.1038/s41746-023-00913-9

SEYYED-KALANTARI L, ZHANG H, MCDERMOTT MBA, CHEN IY, GHASSEMI M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat Med 2021; 27(12): 2176-2182. https://doi.org/10.1038/s41591-021-01595-0

LEWIECKI EM, WRIGHT NC, SINGER AJ. Racial disparities, FRAX, and the care of patients with osteoporosis. Osteoporos Int 2020; 31, 2069-2071. https://doi.org/10.1007/s00198-020-05655-y

KAHNEMAN D. Thinking, Fast and Slow. New York: Farrar, Straus and Giroux, 2011.

DOMINGUEZ-CATENA I, PATERNAIN D, GALAR M. Metrics for dataset demographic bias: A case study on facial expression recognition. IEEE Trans Pattern Anal Mach Intell 2024; 1-18. https://doi.org/10.1109/TPAMI.2024.3361979

BERMÚDEZ-TAMAYO C, DE LABRY-LIMA AO, GARCÍA-MOCHÓN L. No hacer: de las recomendaciones a la acción. An Sist Sanit Navar 2019; 42(1): 105-108. https://doi.org/10.23938/ASSN.0380

THOMASIAN NM, EICKHOFF C, ADASHI EY. Advancing health equity with artificial intelligence. J Public Health Pol 2021 Dec 1; 42(4): 602-611. https://doi.org/10.1057/s41271-021-00319-5

ROCHE C, WALL PJ, LEWIS D. Ethics and diversity in artificial intelligence policies, strategies and initiatives. AI Ethics 2022; 3: 1095-1115. https://doi.org/10.1007/s43681-022-00218-9

MEZGÁR I, VÁNCZA J. From ethics to standards: A path via responsible AI to cyber-physical production systems. An Rev Control 2022; 53: 391-404. https://doi.org/10.1016/j.arcontrol.2022.04.002

LEHOUX P, RIVARD L, DE OLIVEIRA RR, MÖRCH CM, ALAMI H. Tools to foster responsibility in digital solutions that operate with or without artificial intelligence: A scoping review for health and innovation policymakers. Int J Med Inform 2023; 170: 104933. https://doi.org/10.1016/j.ijmedinf.2022.104933

Organization for Economic Co-operation and Development. The state of implementation of the OECD AI Principles four years on. OECD Artificial Intelligence Papers No. 3. Paris: OECD Publishing, 2023. https://doi.org/10.1787/dee339a8-en

MOLLURA DJ, CULP MP, POLLACK E, BATTINO G, SCHEEL JR, MANGO VL et al. artificial intelligence in low- and middle-income countries: Innovating global health radiology. Radiology 2020; 297(3): 513-520. https://doi.org/10.1148/radiol.2020201434

WESSON P, HSWEN Y, VALDES G, STOJONOWSKI K, HANDLEY MA. Risks and opportunities to ensure equity in the application of big data research in public health. Annu Rev Public Health 2022; 43: 59-78. https://doi.org/10.1146/annurev-publhealth-051920-110928

OBASA AE, PALK AC. Responsible application of artificial intelligence in health care. South African Journal of Science 2023; 119(5-6): 1-3.

SUJAN M, SMITH-FRAZER C, MALAMATENIOU C, CONNOR J, GARDNER A, UNSWORTH H et al. Validation framework for the use of AI in healthcare: overview of the new British standard BS30440. BMJ Health Care Inform 2023; 30(1): e100749. https://doi.org/10.1136/bmjhci-2023-100749

Argitaratuta

2024-07-04