Composición corporal y metabolismo energético en mujeres con exceso de peso corporal

Autores/as

  • E. Lopes Rosado
  • J. Bressan
  • C.L. D'Andrea
  • C.E. Vogel

DOI:

https://doi.org/10.23938/ASSN.0543

Palabras clave:

Palabras clave. Obesidad. Composición corporal. Metabolismo energético. Dieta.

Resumen

Fundamentos. El objetivo de presente trabajo es evaluar la composición corporal y el metabolismo energético en mujeres con exceso de peso corporal. Material y métodos. Estudio transversal de intervención no randomizado con 40 mujeres [26 con exceso de peso (G1) y 14 eutróficas (G2)]. Fueron realizadas evaluaciones dietéticas, antropométricas y de la composición corporal (bioimpedancia eléctrica), actividad física (acelerómetro tridimensional) y metabolismo energético (calorimetría indirecta). Resultados. No hubo diferencia en la ingesta energética y en la actividad física entre los grupos. Los parámetros de composición corporal fueron superiores en G1, excepto el agua corporal total. Hubo asociación entre el gasto energético y la composición corporal. La masa corporal magra fue el principal determinante del gasto energético. No hubo diferencia de los parámetros metabólicos entre los grupos, pero se sugiere menor velocidad de oxidación de los nutrientes y mayor eficiencia metabólica en G1. Conclusiones. El exceso de peso corporal se asoció con cambios en la composición corporal y en el metabolismo energético que justifican la acumulación de grasa corporal.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. ROSADO EL, BRESSAN J, MARTINS MF, CECON PR, MARTÍNEZ JA. Polymorphism in the PPARgamma2 and beta2-adrenergic genes and diet lipid effects on body composition, energy expenditure and eating behavior of obese women. Appetite 2007; 49: 635-643.

https://doi.org/10.1016/j.appet.2007.04.003

2. FLATT JP. Glycogen levels and obesity. Int J Obes Relat Metab Disord 1996; 20 (Suppl. 2): S1-11.

3. KIM JY, HICKNER RC, CORTRIGHT RL, DOHM GL, HOUMARD JA. Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 2000; 279: E1039-1044.

https://doi.org/10.1152/ajpendo.2000.279.5.E1039

4. HAUFE S, ENGELI S, BUDZIAREK P, UTZ W, SCHULZ-MENGER J, HERMSDORF M et al. Determinants of exercise-induced fat oxidation in obese women and men. Horm Metab Res 2010; 42: 215-221.

https://doi.org/10.1055/s-0029-1242745

5. HOROWITZ JF, KLEIN S. Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am J Physiol Endocrinol Metab 2000; 278: E1144-1152.

https://doi.org/10.1152/ajpendo.2000.278.6.E1144

6. NAGY TR, GORAN MI, WEINSIER RL, TOTH MJ, SCHUTZ Y, POEHLMAN ET. Determinants of basal fat oxidation in healthy caucasians. J Appl Physiol 1996; 80: 1743-1748.

https://doi.org/10.1152/jappl.1996.80.5.1743

7. MARKS BL, RIPPE JM. The importance of fat free mass maintenance in weight loss programmes. Sports Med 1996; 22: 273-281.

https://doi.org/10.2165/00007256-199622050-00001

8. STIEGLER P, CUNLIFFE A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med 2006; 36: 239-262.

https://doi.org/10.2165/00007256-200636030-00005

9. CEDDIA RB. Gordura corporal, exercício e emagrecimento. Reviews Sprint Magazine 1998; 1: 10-20.

10. ASTRUP A, BUEMANN B, WESTERN P, TOUBRO S, RABEN A, CHRISTENSEN NJ. Obesity as an adaptation to a high-fat diet: evidence from a cross-sectional study. Am J Clin Nutr 1994; 59: 350-355.

https://doi.org/10.1093/ajcn/59.2.350

11. HERMANA HMH, VOLP ACP, BRESSAN J. O perfil de macronutrientes influencia a termogênese induzida pela dieta e a ingestão calórica. ALAN 2007; 57: 33-42.

12. FERRANNINI E. The theoretical bases of indirect calorimetry: a review. Metabolism 1988; 37: 287-301.

https://doi.org/10.1016/0026-0495(88)90110-2

13. WESTERTERP-PLANTEGA MS, WIJCKMANS-DUIJSENS NEG, VERBOEKET-VAN DE VENNE WPG, GRAAF KH, WESTSTRATE JA. Energy intake and body weight effects of six months reduced or full fat diets, as a function of dietary restraint. Int J Obes 1998; 22: 14-22.

https://doi.org/10.1038/sj.ijo.0800538

14. VALTUEÑA S, SALAS-SALVADÓ J, LORDA PG. The respiratory quotient as a prognostic factor in weight-loss rebound. Int J Obes 1997; 21: 811-817.

https://doi.org/10.1038/sj.ijo.0800480

15. CENSI L, TOTI E, PASTORE G, FERRO-LUZZI A. The basal metabolic rate and energy cost of standardized walking of short and tall men. Eur J Clin Nutr 1998; 52: 441-446

https://doi.org/10.1038/sj.ejcn.1600585

16. GORAN MI. Energy metabolism and obesity. Med Clin North Am 2000; 84: 347-362.

https://doi.org/10.1016/S0025-7125(05)70225-X

17. DEJONG AT, GALLAGHER MJ, SANDBERG KR, LILLYSTONE MA, SPRING T, FRANKLIN BA et al. Peak oxygen consumption and the minute ventilation/carbon dioxide production relation slope in morbidly obese men and women: influence of subject effort and body mass index. Prev Cardiol 2008; 11: 100-105.

https://doi.org/10.1111/j.1751-7141.2008.07591.x

18. JACOBSON P, RANKINEN T, TREMBLAY A, PÉRUSSE L, CHAGNON YC, BOUCHARD C. Resting metabolic rate and respiratory quotient: results from a genome-wide scan in the Quebec family study. Am J Clin Nutr 2006; 84: 1527-1533.

https://doi.org/10.1093/ajcn/84.6.1527

19. MARRA M, PASANISI F, MONTAGNESE C, DE FILIPPO E, DE CAPRIO C, DE MAGISTRIS L et al. BMR variability in women of different weight. Clin Nutr 2007; 26: 567-572.

https://doi.org/10.1016/j.clnu.2007.03.006

20. KATZMARZYK PT, PÉRUSSE L, TREMBLAY A, BOUCHARD C. No association between resting metabolic rate or respiratory exchange ratio and subsequent changes in body mass and fatness: 5-1/2 year follow-up of the Québec family study. Eur J Clin Nutr 2000; 54: 610-614.

https://doi.org/10.1038/sj.ejcn.1601053

21. FONTANIVE RS, DE PAULA TP, PERES WAF. Inquéritos dietéticos. En: Duarte AC, Castellani FR. Semiologia nutricional. Rio de Janeiro: Axcel Books 2002, 4; 59-78.

22. MATHEWS CE, FREEDSON PS. Field trial of a three-dimensional activity monitor: comparison with self report. Med Sci Sports Exerc 1995; 27: 1071-1078.

https://doi.org/10.1249/00005768-199507000-00017

23. World Health Organization. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. Technical Report Series 854. Geneva: WHO, 1995.

24. World Health Organization. Obesity: preventing and managing the global epidemic. Report of a WHO Consultation on Obesity. WHO Technical Report Series 894. Geneva: WHO, 1998.

25. Consenso Latino Americano de Obesidade, 1999, 117 p. Disponível no endereço eletrônico da Associação Brasileira de Estudos Sobre Obesidade, URL http://www.abeso.org.br (Acesso el 03/10/2007).

26. LUKASKI HC, JOHNSON PE, BOLONCHUK WW, LYKKEN GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr 1985; 41: 810-817.

https://doi.org/10.1093/ajcn/41.4.810

27. BUSCEMI S, CAIMI G, VERGA S. Resting metabolic rate and postabsorptive substrate oxidation in morbidly obese subjects before and after massive weight loss. Int J Obes 1996; 20: 41-46.

28. RAVUSSIN E, LILLIOJA S, KNOWLER WC, CHRISTIN L, FREYMOND D, ABBOTT WG et al. Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med 1988; 318: 467-472.

https://doi.org/10.1056/NEJM198802253180802

29. World Health Organization. Energy and protein requirements. Report of a Joint FAO/WHO/ONU Expert Consultation. Technical Report Series 724. Geneva: WHO, 1985.

30. DESPRÉS JP, LEMIEUX I, PRUD'HOMME D. Treatment of obesity: need to focus on high risk abdominally obese patients. BMJ 2001; 322: 716-720.

https://doi.org/10.1136/bmj.322.7288.716

31. LICHTENBELT WD, FOGELHOLM M. Increased extracellular water compartment, relative to the intracellular water compartment, after weight reduction. J Appl Physiol 1999; 87: 294-298.

https://doi.org/10.1152/jappl.1999.87.1.294

32. PIERS LS, SOARES MJ, MCCORMACK LM, O'DEA K. Is there evidence for an age-related reduction in metabolic rate? J Appl Physiol 1998; 85: 2196-2204.

https://doi.org/10.1152/jappl.1998.85.6.2196

33. WARLICH V, ANJOS LA. Aspectos históricos e metodológicos da medição e estimativa da taxa metabólica basal: uma revisão da literatura. Cadernos de Saúde Pública 2001; 17: 801-817.

https://doi.org/10.1590/S0102-311X2001000400015

34. SARTORIO A, MALAVOLTI M, AGOSTI F, MARINONE PG, CAITI O, BATTISTINI N et al. Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis. Eur J Clin Nutr 2005; 59: 155-160.

https://doi.org/10.1038/sj.ejcn.1602049

35. ROTH J, QIANG X, MARBÁN SL, REDELT H, LOWELL BC. The obesity pandemic: Where have we been and are we going? Obes Res 2004; 12 (Supl.): 88-101.

https://doi.org/10.1038/oby.2004.273

36. CURI R, LAGRANHA CJ, G JR JR, PITHON-CURI TC, LANCHA JR AH, PELLEGRINOTTI IL et al. Ciclo de krebs como fator limitante na utilização de ácidos graxos durante o exercício aeróbico. Arq Bras Endocrinol Metab 2003; 47: 135-143.

https://doi.org/10.1590/S0004-27302003000200005

37. PRENTICE AM, RAYCO-SOLON P, MOORE SE. Insights from the developing world: thrifty genotypes and thrifty phenotypes. Proc Nutr Soc 2005; 64: 153-161.

https://doi.org/10.1079/PNS2005421

38. MOURÃO DM, MONTEIRO JBR, HERMSDORFF HHM, TEIXEIRA MCL Alimentos modificados e suas implicações no metabolismo energético. Rev Nutr 2005; 18: 19-28.

https://doi.org/10.1590/S1415-52732005000100002

39. DE JONG AT, GALLAGHER MJ, SANDBERG KR, LILLYSTONE MA, SPRING T, FRANKLIN BA et al. Peak oygen consumption and the minute ventilation/carbon dioxide production relation slope in morbidly obese men and women: Influence of subject effort and body mass index. Prev Cardiol 2008; 11: 100-105.

https://doi.org/10.1111/j.1751-7141.2008.07591.x

40. FLATT JP. Carbohydrate-fat interactions and obesity examined by a two-compartment computer model. Obes Res 2004; 12: 2013-2022.

https://doi.org/10.1038/oby.2004.252

41. MARRA M, SCALFI L, COVINO A, ESPOSITO-DEL PUENTE A, CONTALDO F. Fasting respiratory quotient as a predictor of weight changes in non obese women. Int J Obes 1998; 22: 601-603.

https://doi.org/10.1038/sj.ijo.0800612

42. MARTÍNEZ JA, MORENO MJ, MARQUÉS-LOPES I, MARTÍ A. Causas de obesidad. An Sist Sanit Navar 2002; 25 (Supl.1): 17-27.

https://doi.org/10.23938/ASSN.0811

43. RAVUSSIN E, BURNAND B, SCHUTZ Y, JÉQUIER E. Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. Am J Clin Nutr 1982; 35: 566-573.

https://doi.org/10.1093/ajcn/35.3.566

44. WALEWSKI JL, GE F, GAGNER M, INABNET WB, POMP A, BRANCH AD et al. Adipocyte accumulation of long-chain fatty acids in obesity is multifactorial, resulting from increased fatty acid uptake and decreased activity of genes involved in fat utilization. Obes Surg 2010; 20: 93-107.

https://doi.org/10.1007/s11695-009-0002-9

Descargas

Publicado

01-10-2010

Cómo citar

1.
Lopes Rosado E, Bressan J, D’Andrea C, Vogel C. Composición corporal y metabolismo energético en mujeres con exceso de peso corporal. An Sist Sanit Navar [Internet]. 1 de octubre de 2010 [citado 20 de diciembre de 2025];33(2):155-6. Disponible en: https://recyt.fecyt.es/index.php/ASSN/article/view/8840

Número

Sección

Artículos originales

Artículos similares

<< < 67 68 69 70 71 72 73 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.