Hyperspectral proximal sensing for carbonate rocks characterization in the SWIR (Short-Wave Infrared)

Authors

  • Indira Rodríguez Grupo de Investigación Geología Ambiental, Cuaternario y Geodiversidad (Q-GEO), Facultad de Ciencias Biológicas y Ambientales, Universidad de León
  • Eduardo García-Meléndez Grupo de Investigación Geología Ambiental, Cuaternario y Geodiversidad (Q-GEO), Facultad de Ciencias Biológicas y Ambientales, Universidad de León
  • Montserrat Ferrer-Juliá Grupo de Investigación Geología Ambiental, Cuaternario y Geodiversidad (Q-GEO), Facultad de Ciencias Biológicas y Ambientales, Universidad de León
  • Wim Bakker Department of Applied Earth Sciences, Faculty of Geo information Science & Earth Observation (ITC), University Twente, The Netherlands
  • Juncal Altagracia Cruz Grupo de Investigación Geología Ambiental, Cuaternario y Geodiversidad (Q-GEO), Facultad de Ciencias Biológicas y Ambientales, Universidad de León
  • Antonio Espín de Gea Unidad Tecnológica Geológico-Minera del Centro Tecnológico del Mármol, Piedra y Materiales (CTM), Murcia

DOI:

https://doi.org/10.55407/geogaceta108997

Keywords:

imaging espectrometry, spectral signature, mineral composition

Abstract

In this work proximal hyperspectral images are used to make a compositional map of one sample of ornamental carbonate rock (formed by variable content of dolomite and calcite) in terms of mineralogical composition. The hyperspectral dataset consists of a total number of 278 bands corresponding to the short-wave infrared (SWIR) wavelengths. After visual analysis and interpretation, 8 points or pixels were selected as reference spectra for image classification through the Spectral Angle Mapper (SAM) algorithm. The results show the spatial distribution of calcite and dolomite based on their characteristic and diagnostic absorption features (at 2335 and 2315 nm respectively), and areas with different proportions of calcite and dolomite mixture, and the presence of carbonates and clay mineral mixtures. The applied technique demonstrates the potential of hyperspectral proximal sensing procedures for mineral characterization of samples in the laboratory, expanding the application for the analysis and interpretation in field outcrops.

References

Alonso de Linaje, V. and Khan, D.S. (2017). Sedimentary Geology 353, 114-124. https://doi.org/10.1016/j.sedgeo.2017.03.010

Baena, L., (1974). Mapa Geológico de España 1:50000, Hoja Magna Jumilla 869. Servicio Geológico y Minero de España.

Bayly, J.G, Kartha, V.B. and Stevens W.H. (1963). Infrared Physics 3(4), 211-222. https://doi.org/10.1016/0020-0891(63)90026-5

Boesche, N.K., Rogass, C., Lubitz, C., Brell, M., Herrmann, S., Mielke, C., Tonn, S., Appelt, O., Altenberger, U. and Kaufmann, H. (2015). Remote sensing 7, 5160-5186. https://doi.org/10.3390/rs70505160

Clark, R.N. (1999). Manual of Remote Sensing, Volume 3, Remote Sensing for the Earth Sciences, John Wiley and Sons, New York, 3-58.

Gaffey, S.J. (1984). Spectral reflectance of carbonate minerals and rocks in the visible and near-infrared (0.35-2.55 µm): Applications in carbonate petrology. Ph.D. thesis, Honolulu, University of Hawaii, 236 p. https://doi.org/dsgrt8

Goetz, A.F.H., Vane, G, Solomon, J. and Rock, B.N. (1985). Science 228, 1147-1153. https://doi.org/10.1126/science.228.4704.1147

Hunt, G.R. (1977). Geophysics 42, 501-513. https://doi.org/10.1190/1.1440721

Hunt, G.R. and Salisbury, J.W. (1970). Modern Geology 1, 283-300.

Hunt, G.R. and Salisbury, J.W. (1971). Modern Geology 2, 23-30.

Jerez, L., García-Monzón, G., and Jerez, F. (1974). Mapa Geológico de España 1:50000, Hoja Magna Calasparra 890. Servicio Geológico y Minero de España.

Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E., Hoefen, T.M., Pearson, N.C., Wise, R.A., Benzel, W.M., Lowers, H.A., Driscoll, R.L. and Klein, A.J. (2017). USGS Spectral Library Version 7: U.S. Geological Survey Data Series 1035, 61 p. https://doi.org/10.3133/ds1035

Krupnik, D. and Khan, S. (2019). Earth-Science Reviews 198, 102952. https://doi.org/10.1016/j.earscirev.2019.102952

Kruse, F.A., Lefkoff, A.B., Boardman, J.B., Heidebrecht, K.B., Shapiro, A.T., Barloon, P.J. and Goetz, A.F.H. (1993). Remote Sensing of Environment 44, 145-163. https://doi.org/10.1016/0034-4257(93)90013-N

Murphy, R., Schneider, S. and Monteiro, S.T. (2014). Remote Sensing 6(9), 9104-9129. https://doi.org/10.3390/rs6099104

Riaza, A., García-Meléndez, E. and Mueller, A. (2011). International Journal of Remote Sensing 32(1),185-208. https://doi.org/10.1080/01431160903439957

Van Der Meer, F. (1995). Remote Sensing Reviews 13, 67-94. https://doi.org/10.1080/02757259509532297

Zaini, N. (2018). Infrared carbonate rock chemistry characterization. Ph.D. thesis, Enschede, University of Twente, 129 p.

Zaini, N., van der Meer, F., and van der Werff, H. (2014). Remote Sensing 6(5), 4149-4172. https://doi.org/10.3390/rs6054149

Downloads

Published

2025-06-20

How to Cite

Rodríguez , I., García-Meléndez, E., Ferrer-Juliá, M., Bakker, W., Cruz, J. A., & Espín de Gea, A. (2025). Hyperspectral proximal sensing for carbonate rocks characterization in the SWIR (Short-Wave Infrared). GEOGACETA, 77, 55–58. https://doi.org/10.55407/geogaceta108997

Issue

Section

Artículos

Most read articles by the same author(s)