High-resolution topography of Gusev crater using CTX data (Mars).

Authors

  • Ronny Steveen Anangonó-Tutasig Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo https://orcid.org/0000-0001-9227-7020
  • Francisco Javier De Cos Juez Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo
  • Susana Fernández Menéndez Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo https://orcid.org/0000-0001-8267-0371

DOI:

https://doi.org/10.55407/geogaceta100671

Keywords:

crater, Mars, topography, morphology, Digital Terrain Model (DTM)

Abstract

High-resolution Digital Terrain Models (DTMs) of Mars are both limited and crucial for studying surface processes. The available DTMs generated from Mars Orbiter Laser Altimeter (MOLA) and High-Resolution Stereo Camera (HRSC) data offer limited resolution for working on a metre scale. The MER-A mission’s exploration of the Gusev crater was based on the data provided by MOLA and HRSC. However, with the introduction of the stereoscopic images obtained by the Context Camera (CTX) on board the Mars Reconnaissance Orbiter (MRO), it has been possible to generate topographic data with greater detail, significantly improving the MOLA and HRSC data. This has resulted in the generation of new DTMs with a resolution of ~5 m/pixel. Comparative analysis of these CTX DTMs with the MOLA and HRSC data provides an updated perspective of the Gusev topography and its geological features. The prominent advantage of using CTX stereo images lies in their wide coverage, as they have mapped 99.9% of the Martian surface. This wide coverage allows the creation of high-resolution models that will prove invaluable for future studies and missions.

References

Anderson, J. et al. (2004) 'Modernization of the Integrated Software for Imagers and Spectrometers', Lunar Planet. Sci., 35.

Anderson, J.A. (2008) 'ISIS Camera Model Design', p. 2159.

Beyer, R.A., Alexandrov, O. and McMichael, S. (2018) 'The Ames Stereo Pipeline: NASA's Open-Source Software for Deriving and Processing Terrain Data', Earth and Space Science, 5(9), pp. 537-548. Available at: https://doi.org/10.1029/2018EA000409

French, Bevan.M. (1999) 'Traces of catastrophe: a handbook of shock-metamorphic effects in terrestrial meteorite impact structures', Choice Reviews Online, 36(10), pp. 36-5704-36-5704. Available at: https://doi.org/10.5860/CHOICE.36-5704

Grin, E.A. and Cabrol, N.A. (1997) 'Subglacial Rotary Currents in Gusev Crater Paleolake (Mars)', p. 475.

Gwinner, K. et al. (2016) 'The High-Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites', Planetary and Space Science, 126, pp. 93-138. Available at: https://doi.org/10.1016/j.pss.2016.02.014

Kuzmin, R.O. et al. (2000) Geologic map of the MTM-15182 and MTM-15187 quadrangles, Gusev Crater-Ma'adim Vallis region, Mars. Available at: https://doi.org/10.3133/i2666

Laura, J. and Fergason, R.L. (2016) 'Modeling martian thermal inertia in a distributed memory high performance computing environment', in 2016 IEEE International Conference on Big Data (Big Data). 2016 IEEE International Conference on Big Data (Big Data), pp. 2919-2928. Available at: https://doi.org/10.1109/BigData.2016.7840942

Malin, M.C. et al. (2007) 'Context Camera Investigation on board the Mars Reconnaissance Orbiter', Journal of Geophysical Research: Planets, 112(E5). Available at: https://doi.org/10.1029/2006JE002808

Milam, K.A. et al. (2003) 'THEMIS characterization of the MER Gusev crater landing site', Journal of Geophysical Research: Planets, 108(E12). Available at: https://doi.org/10.1029/2002JE002023

Moratto, Z. et al. (2010) 'Ames Stereo Pipeline, NASA's Open Source Automated Stereogrammetry Software', Lunar Planet. Sci. Conf., 41.

Smith, D.E. et al. (2001) 'Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars', Journal of Geophysical Research: Planets, 106(E10), pp. 23689-23722. Available at: https://doi.org/10.1029/2000JE001364

Triggs, B. et al. (2000) 'Bundle Adjustment - A Modern Synthesis', in B. Triggs, A. Zisserman, and R. Szeliski (eds) Vision Algorithms: Theory and Practice. Berlin, Heidelberg: Springer Berlin Heidelberg (Lecture Notes in Computer Science), pp. 298-372. Available at: https://doi.org/10.1007/3-540-44480-7_21

Xia, Z.H.U., Hong, L.I. and Wei, Z. (2008) 'Image Inpainting Algorithm Based on Color Region Segmentation', Computer Engineering, 34(14), pp. 191-193. Available at: https://doi.org/10.3969/j.issn.1000-3428.2008.14.068

Downloads

Published

2024-06-29

How to Cite

Anangonó-Tutasig, R. S., De Cos Juez, F. J., & Fernández Menéndez, S. . (2024). High-resolution topography of Gusev crater using CTX data (Mars). GEOGACETA, 75, 91–94. https://doi.org/10.55407/geogaceta100671

Issue

Section

Artículos