Improving the efficiency of wide-angle seismic data inversion through a nonlinear algorithm: case study of the MARCONI-3 profile

Authors

  • Andrés Olivar-Castaño Dpto. Geología, Universidad de Oviedo.
  • Irene DeFelipe Dpto. Geología, Universidad de Salamanca.
  • Marco Pilz GeoForschungs Zentrum, Potsdam, Alemania.
  • Mario Ruiz Instituto Geociencias Barcelona, GEO3BCN-CSIC, Barcelona
  • Ramón Carbonell Instituto Geociencias Barcelona, GEO3BCN-CSIC, Barcelona

DOI:

https://doi.org/10.55407/geogaceta99821

Keywords:

Simulated annealing, nonlinear inversion, wide-angle seismic, crustal structure

Abstract

Wide-angle seismic reflection/refraction (WA) surveys provide data that can be modeled to obtain lithospheric-scale P-wave velocity (VP) models. The interpretation of these datasets is often performed as a laborious and time-consuming trial-and-error procedure, in which the relevant model parameters (layer thickness and VP) are manually adjusted until the forward modeling matches the observed travel-times. In this work, we present a fully automatic iterative nonlinear approach to invert WA datasets based on the simulated annealing technique. We test our proposed approach with data from the MARCONI-3 WA profile (southern Bay of Biscay) and compare the outcome with an existing detailed interpretation, discussing the similarities between the two models and the agreement between our model and the observed travel-times.

References

Ben-Ameur, W. (2004). Computational Optimization and Applications, 29, 369- 385. https://doi.org/10.1023/B:COAP.0000044187.23143.bd

Cadenas, P., Fernández-Viejo, G., Pulgar, J. A., Tugend, J., Manatschal, G. and Minshull, T. A. (2018). Tectonics, 37(3), 758- 785. https://doi.org/10.1002/2016TC004454

DeFelipe, I., Pedreira, D., Pulgar, J. A., Iriarte, E. and Mendia, M. (2017). Geochemistry, Geophysics, Geosystems, 18(2). https://doi.org/10.1002/2016GC006690

DeFelipe, I., Pulgar, J. A. and Pedreira, D. (2018). Revista de la Sociedad Geológica de España, 31(2), 69-82. https://doi.org/10.13039/501100003329

DeFelipe, I., Pedreira, D., Pulgar, J. A., van der Beek, P. A., Bernet, M. and Pik, R. (2019). Tectonics, 38(9), 3436-3461. https://doi.org/10.1029/2019TC005532

DeFelipe, I., Alcalde, J., Ivandic, M., Martí, D., Ruiz, M., Marzán, I. et al. (2021). Earth System Science Data, 13, 1053-1071. https://doi.org/10.5194/essd-13-1053-2021

Ferrer, O., Roca, E., Benjumea, B., Muñoz, J. A., Ellouz, N., Gallart, J., et al. (2008). Marine and Petroleum Geology, 25(8), 714-730, doi: 10.1016/j.marpetgeo. https://doi.org/10.1016/j.marpetgeo.2008.06.002

Gallart, J., Pulgar, J. A., Muñoz, J. A., Diaz, J., and Ruiz, M. (2020). DIGITAL.CSIC, https://digital.csic.es/handle/10261/222155

Kirkpatrick, S. (1984). Journal of Statistical Physics, 34, pages 975-986. https://doi.org/10.1007/BF01009452

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. (1983). Science, 220, 4598, 671-680. https://doi.org/10.1126/science.220.4598.671

Metropolis, N., Rosenbluth, W. A., Rosenbluth, M. N. and Teller, A. H. (1953). Journal of Chemical Physics, 21(6), 1087-1092. https://doi.org/10.1063/1.1699114

Olivar-Castaño, A., Pilz, M., Pedreira, D., Pulgar, J. A., Díaz-González, A., and González- Cortina, J. M. (2020). Journal of Geophysical Research: Solid Earth, 125, 1-20. https://doi.org/10.1029/2020JB019559

Pedreira, D., Pulgar, J. A., Gallart, J., and Díaz, J. (2003). Journal of Geophysical Research: Solid Earth, 108(B4), 1-21. https://doi.org/10.1029/2001JB001667

Pedreira, D., Pulgar, J. A. and Torné, M. (2007). Journal of Geophysical Research: Solid Earth, 112(B12). https://doi.org/10.1029/2007JB005021

Pica, A., Diet, J. P., Tarantola, A. (1990). Geophysics, 55, 3, 266-379. https://doi.org/10.1190/1.1486742

Roca, E., Muñoz, J. A., Ferrer, O., and Ellouz, N. (2011). Tectonics, 30(2), 1-33. https://doi.org/10.1029/2010TC002735

Ruiz, M. (2007). Caracterització estructural i sismotectònica de la litosfera en el domini Pirenaico-Cantàbric a partir de mètodes de sísmica activa i passiva. PhD Thesis, Universitat de Barcelona.

Ruiz, M., Díaz, J., Pedreira, D., Gallart, J., and Pulgar, J. A. (2017). Tectonophysics, 717, 65-82. https://doi.org/10.1016/j.tecto.2017.07.008

Sambridge, M. (2001). Inverse Problems, 17, 387-403. https://doi.org/10.1088/0266-5611/17/3/302

Teixell, A., Labaume, P., Ayarza, P., Espurt, N., de Saint Blanquat, M. and Lagabrielle, Y. (2018). Tectonophysics, 724-725, 146-170. https://doi.org/10.1016/j.tecto.2018.01.009

Tugend, J., Manatschal, G., Kusznir, N. J., Masini, E., Mohn, G., and Thinon, I. (2014). Tectonics, 33(7), 1239-1276. https://doi.org/10.1002/2014TC003529

Zelt, C. (1999). Geophysical Journal International 139(1), 183-204. https://doi.org/10.1046/j.1365-246X.1999.00934.x

Zelt, C., and Smith, R. (1992). Geophysical Journal International, 108(1), 16 - 34. https://doi.org/10.1111/j.1365-246X.1992.tb00836.x

Downloads

Published

2022-06-06

How to Cite

Olivar-Castaño, A., DeFelipe, I., Pilz, M., Ruiz, M., & Carbonell, R. (2022). Improving the efficiency of wide-angle seismic data inversion through a nonlinear algorithm: case study of the MARCONI-3 profile. GEOGACETA, 71, 27–30. https://doi.org/10.55407/geogaceta99821

Issue

Section

Artículos