Arid conditions around the 8.2 ka event recorded by stable isotopes of gypsum in Laguna de Medina (Cádiz)

Authors

  • Lucia Martegani Grupo de Recursos Hídricos y Geología Ambiental. Departamento de Biología y Geología. Universidad de Almería. España
  • Fernando Gázquez Grupo de Recursos Hídricos y Geología Ambiental. Departamento de Biología y Geología. Universidad de Almería, España
  • Martin Melles Institute of Geology and Mineralogy, University of Cologne, Alemania
  • Tabea Schröder Institute of Geology and Paleontology, Aachen University, Alemania
  • Klaus Reicherter Institute of Neotectonics and Natural Hazards, RWTH Aachen University, Alemania

DOI:

https://doi.org/10.55407/geogaceta95513

Keywords:

gypsum, stable isotopes, 8.2 ka event, paleoclimate, lakes

Abstract

The southern Iberian Peninsula has been especially sensitive to climate changes during the Holocene, which were recorded by the sedimentary sequences in the numerous lakes of the Guadalquivir Basin. In this study, we investigate the oxygen and hydrogen isotopes (δ18O, δ2H and d-excess) of gypsum (CaSO4·2H2O) hydration water from the sedimentary sequence of Laguna de Medina (Cádiz) to reconstruct the isotopic composition of the lake water in the past, in connection to climate changes. We focus on sediments retrieved from 24 to 18 m deep, which ages range from ~9.0 to ~7.0 cal. ky BP. The sediments of the lake recorded an intense aridity episode around ~7.7 cal. ky BP, evidenced by the presence of gypsum. The elevated δ18O and δ2H values of the paleo-lake water (up to 7.4‰ and 26.1‰, respectively) indicate that the solution from which gypsum formed was highly evaporated. Such arid conditions could be attributed to the 8.2 ka event, a global cold climatic episode. Research in progress aims to quantify climatic parameters (humidity and temperature) during the 8.2 ka event from the Laguna de Medina sedimentary sequence and to improve the chronology of this episode.

References

Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C. y Clark, P.U. (1997). Geology 25, 483-486. https://doi.org/10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2

Alley, R.B. y Agústsdóttir, A.M. (2005). Quaternary Science Reviews 24, 1123-1149. https://doi.org/10.1016/j.quascirev.2004.12.004

Baldini, L.M., Baldini, J.U.L., McDermott, F., Arias, P., Cueto, M., et al. (2019). Quaternary Science Reviews 226, 105998. https://doi.org/10.1016/j.quascirev.2019.105998

Benson, A., Hoffmann, D. L., Daura, J., Sanz, M., Rodrigues, F., Souto, P. y Zilhão, J. (2021). The Holocene 8, 1339-1350. https://doi.org/10.1177/09596836211011666

Dean, J.R., Jones, M.D., Leng, M.J., Noble, S.R., Metcalfe, S.E., Sloane, H.J. et al. (2015). Quaternary Science Reviews 124, 162-174. https://doi.org/10.1016/j.quascirev.2015.07.023

Evans, N.P., Bauska, T. K., Gázquez, F., Curtis, J.H., Brenner, M. y Hodell, D.A. (2018). Science 361, 6401, 498-501. https://doi.org/10.1126/science.aas9871

Gasse, F. y van Campo, E. (1994). Earth and Planetary Science Letters 126, 435-456. https://doi.org/10.1016/0012-821X(94)90123-6

Gázquez F., Evans, N. P. y Hodell D. A. (2017). Geochimica et Cosmochimica Acta 198, 259-270. https://doi.org/10.1016/j.gca.2016.11.001

Gázquez F., Bauska, T.K., Comas-Bru, L., Bassam, G., Calaforra, J.M. y Hodell, D.A. (2020). Scientific Reports 10, 14705. https://doi.org/10.1038/s41598-020-71679-3

Grootes, P. M., Stuiver, M., White, J. W. C., Johnsen, S. J. y Jouzel, J. (1993). Nature 366, 552-554. https://doi.org/10.1038/366552a0

Kurek, J., Cwynar, L., Spear, R.W. y Schulz, M. (2002). En: Geological Society of America, Abstracts with Programs 34, 49.

Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., Alpert, P. et al. (2006). Developments in Earth and Environmental Sciences. https://doi.org/10.1016/S1571-9197(06)80003-0

López-Sáez, J.A., López-Merino, L. y Pérez-Díaz, S. (2008). En: VII Congreso Ibérico de Arqueometría, 77-86.

Nieto-Moreno, V., Martínez-Ruiz, F., Giralt, S., Jimenez-Espejo, F., Gallego-Torres, D. et al. (2011). Climate of the Past 7, 1395-1414. https://doi.org/10.5194/cp-7-1395-2011

Ramós-Román, M.J., Jiménez-Moreno, G. et al. (2018). Global and Planetary Change 168, 35-63. https://doi.org/10.1016/j.gloplacha.2018.06.003

Reed, J.M., Stevenson, A.C. y Juggins, S. (2001). The Holocene 11, 707-719. https://doi.org/10.1191/09596830195735

Schröder, T., van't Hoff, J., López-Sáez, J.A, Viehberg F., Melles, M. y Reicherter, K. (2018). Quaternary Science Reviews 198, 208-225. https://doi.org/10.1016/j.quascirev.2018.08.030

Schröder, T., López-Sáez, J.A, van't Hoff, J. y Reicherter, K. (2020). The Holocene 30, 13-22. https://doi.org/10.1177/0959683619865590

van't Hoff, J. (2017). Tesis doctoral. Unidad de Colonia, Alemania. 115 p.

Zielhofer, C., Fletcher, W. J., Mischke, S., De Batist, M., Campbell, J. F. E. et al. (2017). Quaternary Science Reviews 157, 29-51. https://doi.org/10.1016/j.quascirev.2016.11.037

Published

2023-06-05

How to Cite

Martegani, L., Gázquez, F., Melles, M., Schröder, T. ., & Reicherter, K. . (2023). Arid conditions around the 8.2 ka event recorded by stable isotopes of gypsum in Laguna de Medina (Cádiz). GEOGACETA, 73, 43–46. https://doi.org/10.55407/geogaceta95513

Issue

Section

Artículos

Most read articles by the same author(s)