Gypsum crystal morphologies in lake sediments for paleoclimate reconstructions: a case study in Fuente de Piedra playa-lake (Málaga)

Authors

  • Lucia Martegani Department of Biology and Geology, University of Almería, Spain - Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
  • Fernando Gázquez Department of Biology and Geology, University of Almería, Spain - Andalusian Centre for the Monitoring and Assessment of Global Change (CAESCG), University of Almería, Spain
  • Claudia Voigt Department of Biology and Geology, University of Almería, Spain
  • Alejandro Jiménez-Bonilla Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Seville, Spain
  • Miguel Rodríguez-Rodríguez Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Seville, Spain
  • Klaus Reicherter Institute of Neotectonics & Natural Hazards, RWTH Aachen University, Germany

DOI:

https://doi.org/10.55407/geogaceta104492

Keywords:

gypsum, morphological varieties, lake level reconstruction, playa-lake, paleoclimate

Abstract

Gypsum (CaSO4∙2H2O) is one of the most common evaporitic minerals on Earth. Its crystals exhibit diverse morphologies that can provide insights into their depositional environment. We analyzed the morphologies of gypsum deposits in a 14 m sedimentary sequence of Fuente de Piedra playa-lake (Málaga, Spain) to link its variations to sedimentary facies and changes in the past lake level. Precipitation of primary prismatic crystals prevailed during lake highstand periods. In contrast, lenticular gypsum crystals are consistently present throughout the entire core and do not seem to be related to specific lake levels. An exception are macro-lenticular crystals, which seem to be correlated with dry periods and high salinity water. Subrounded gypsum grains, eroded from former primary crystals, are also abundant along the sequence and usually concentrate in facies related to stages of lake agitation during highstand periods. Gypsum is generally absent during lowstand periods, which may indicate relatively high dissolve organic matter or, more likely, less interaction of the lake with the saline groundwater aquifer beneath. Our results suggest that the occurrence of some gypsum morphologies can be used to infer paleo-lake levels.

 

References

Aref, M.A. (1998). Sediment, 45:245-262. https://doi.org/10.1046/j.1365-3091.1998.00136.x

Aref, M.A. and Mannaa, A.A. (2021). Environmental Earth Sciences, 80, 47 (2021). https://doi.org/10.1007/s12665-020-09298-4

Bolle, H.J. (2003). Mediterranean Climate. Variability and Trends. (H.J. Bolle, Ed.). Springer Science & Business Media, Berlin, 393 pp. https://doi.org/10.1007/978-3-642-55657-9

Cao, T., Rolf, J., Wang, Z., Violet, C. and Elimelech, M. (2022). Water Research, 218, 118500. https://doi.org/10.1016/j.watres.2022.118500

Cody, R.D. and Cody, A.M. (1988). Journal of Sedimentary Petrology, 58 (2), 247-255. https://doi.org/10.1306/212F8D69-2B24-11D7-8648000102C1865D

Flinch, J.F. and Soto, J.I. (2022). Marine and Petroleum Geology, 143, 105782. https://doi.org/10.1016/j.marpetgeo.2022.105782

García-Alix, A., Jiménez-Moreno, G., Gázquez, F., Monedero-Contreras, R., López-Avilés, A., Jiménez-Espejo, F.J., Rodríguez-Rodríguez, M., Camuera, J., Ramos-Román, M.J. and Anderson, R.S. (2022). CATENA, 214,106292. https://doi.org/10.1016/j.catena.2022.106292

Gázquez-Sánchez, F., Jiménez-Espejo, F., Rodríguez-Rodríguez, M., Martegani, L., Voigt, C., Ruíz-Lara, D., Moreno, A., Valero-Garcés, B., Morellón, M. and Martín-Puertas, C. (2023) Scientific Reports 13, 18815. https://doi.org/10.1038/s41598-023-46010-5

Gutiérrez, F., Ortí, F., Gutiérrez, M., Pérez-González, A., Benito, G., Gracia, J. and Durán, J.J. (2002). Carbonates and Evaporites 17 (2), 121-133. https://doi.org/10.1007/BF03176478

Höbig, N., Mediavilla, R., Gibert, L., Santisteban, J.I., Cendon, D.I., Ibañez, J. and Reicherter, K. (2016). Quaternary International, 407, 29-46. https://doi.org/10.1016/j.quaint.2016.02.051

Klein C. and Hurlbut C. S. (1997). Manual de mineralogía, vol. 2. Reverté, Barcelona, 679 pp.

Magee, J.W., Bowler, J.M., Miller, G.H. and Williams, D.L.G. (1995). Palaeogeography, Palaeoclimatology, Palaeoecology, 113:3-42. https://doi.org/10.1016/0031-0182(95)00060-Y

Martegani, L., Gázquez, F., Melles, M., Schröder, T. and Reicherter, K. (2023). Geogaceta, 73, 43-46. https://doi.org/10.55407/geogaceta95513

Mediavilla, R., Santisteban, J.I., López-Cilla, I., Galán de Frutos, L. and de la Hera-Portillo, A. (2020). Water, 12, 1911. https://doi.org/10.3390/w12071911

Mees, F., Casteneda, C., Herrero and J. and van Ranst, E. (2012). Journal of Sedimentary Research 82, 37-52. https://doi.org/10.2110/jsr.2012.3

Rodríguez-Rodríguez, M. (2002). Contribución hidrogeológica y limnológica a la caracterización ambiental de zonas húmedas de Andalucía oriental. Ph.D. Thesis.University of Granada, Spain, 208pp.

Rodríguez-Rodríguez, M., Martos-Rosillo, S. and Pedrera, A. (2016). Journal of Hydrology, 543, 462-476. https://doi.org/10.1016/j.jhydrol.2016.10.021

Serrano García, A.M. (1982). Geological Map of Spain 1:50,000, sheet No. 1023 (Antequera) and report. IGME, Madrid, 50 p.

Valero-Garcés, B., Morellón, M., Moreno, A., Corella, J. P., Martín-Puertas, C., Barreiro, F., Pérez, A., Giralt, S. and Mata-Campo, M. P. (2014). Sedimentary Geology, 299, 1-29. https://doi.org/10.1016/j.sedgeo.2013.10.007

Vogel, M.B., Des Marai, D.J., Parenteau, M.N., Jahnke, L.L., Turk, K.A. and Kubo, M.D.Y. (2010). Sedimentary Geology, 223:265-280. https://doi.org/10.1016/j.sedgeo.2009.11.013

Downloads

Published

2024-12-02

How to Cite

Martegani, L., Gázquez, F., Voigt, C., Jiménez-Bonilla, A., Rodríguez-Rodríguez, M., & Reicherter, K. (2024). Gypsum crystal morphologies in lake sediments for paleoclimate reconstructions: a case study in Fuente de Piedra playa-lake (Málaga) . GEOGACETA, 76, 11–14. https://doi.org/10.55407/geogaceta104492

Issue

Section

Artículos

Most read articles by the same author(s)