Geology and geochemistry of Poderosa mine. Assessment of the source of rare earths in acid mine drainages
DOI:
https://doi.org/10.55407/geogaceta102294Keywords:
Iberian Pyrite belt, REE patternAbstract
The Iberian Pyrite Belt (IPB) is a large metallogenic sulfide province, where around 1 m3/s of acid mine drainage (AMD) are generated, increasing the acidity and adding metal(oid)s to aquatic environments, creating a great concern worldwide. In addition, AMD has recently been considered a strategic alternative as a secondary source of rare earth elements (REE), due to its high concentration and its preferential enrichment in medium REE (MREE). The origin of REE in AMD is still uncertain, although recent studies suggest that preferential leaching of MREE enriched mineral phases may trigger the REE input during water-rock interaction. To study this geochemical process in the IPB, Poderosa mine has been selected, due to its high REE content and the current historical data available from AMD. In this work, preliminary studies have been carried out, allowing the definition of different lithologies that conform the Poderosa mine area, and which could behave as a source of REE in AMDs. It has been concluded, considering further studies in the future, that the contribution of REE to the leachate must be produced by the combined interaction of AMD with various sources, as there are no samples with a REE pattern similar to AMD.
References
Akcil, A., y Koldas, S. (2006). Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14(12-13), 1139-1145. https://doi.org/10.1016/j.jclepro.2004.09.006
Ayora C., Caraballo M.A., Macías F., Rötting T.S., Carrera J., Nieto J.M. (2013) Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences. Environmental Science and Pollution Research, 20, 7837-7853. https://doi.org/10.1007/s11356-013-1479-2
Ayora C., Macías F., Torres E., Lozano A., Carrero S., Nieto J.M., Pérez-López R., Fernández- Martínez A., y Castillo-Michel H. (2016). Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage. Environmental Science and Technology, 50, 8255-8262. https://doi.org/10.1021/acs.est.6b02084
Cánovas, C. R., Macías, F., y Olías, M. (2018). Hydrogeochemical behavior of an anthropogenic mine aquifer: Implications for potential remediation measures. Science of The Total Environment, 636, 85-93. https://doi.org/10.1016/j.scitotenv.2018.04.270
Cánovas, C. R., Macías, F., Olías, M., Basallote, M. D., Pérez-López, R., Ayora, C., y Nieto, J. M. (2020). Release of technology critical metals during sulfide oxidation processes: the case of the Poderosa sulfide mine (south-west Spain). Environmental Chemistry, 17(2), 93-104. https://doi.org/10.1071/EN19118
Da Silva E., Ferreira E., Bobos I., Matos J.X., Patinha C., Reis A.P., y Fonseca E.C. (2009). Mineralogy and geochemistry of trace metals and REE in massive volcanic sulphide host rocks, stream sediments, stream waters and acid mine drainage from the Lousal mine area (Iberian Pyrite Belt, Portugal). Applied geochemistry, 24, 383-401. https://doi.org/10.1016/j.apgeochem.2008.12.001
Gonzalo y Tarín, J. 1888. Descripción física, geológica y minera de la provincia de Huelva. En Memorias de la Comisión del Mapa Geológico de España. Tomo II (Madrid. 660 pp.).
Hedin, B. C., Hedin, R. S., Capo, R. C., y Stewart, B. W. (2020). Critical metal recovery potential of Appalachian acid mine drainage treatment solids. International Journal of Coal Geology, 231, 103610. https://doi.org/10.1016/j.coal.2020.103610
Lottermoser, B. G. (2011). Recycling, reuse and rehabilitation of mine wastes. Elements, 7, 405-410. https://doi.org/10.2113/gselements.7.6.405
Macías, F., Pérez-López, R., Caraballo, M.A., Cánovas, C.R., Nieto, J.M. (2017). Management strategies and valorization for waste sludge from active treatment of extremely metal-polluted acid mine drainage: a contribution for sustainable mining. Journal of Cleaner Production, 141, 1057-1066. https://doi.org/10.1016/j.jclepro.2016.09.181
Moreno, C. (1993). Postvolcanic Paleozoic of the Iberian Pyrite Belt: an example of basin morphologic control on sediment distribution in a turbidite basin. Journal of Sedimentary Petrology 63, 1118-1128. https://doi.org/10.1306/D4267CBC-2B26-11D7-8648000102C1865D
Moreno, C., y Saéz, R. (1990). Sedimentación marina somera en el devónico del Anticlinorio de Puebla de Guzmán, Faja Pirítica Ibérica. Geogaceta 8, 62-64.
Noack, C.W., Dzombak D.A., y Karamalidis A.K. (2014) Rare Earth Element Distributions and Trends in Natural Waters with a Focus on Groundwater. Environmental Science and Technology, 48, 4317- 4326. https://doi.org/10.1021/es4053895
Nocete, F. (2006). The first specialised copper industry in the Iberian Peninsula: Cabezo Jure (2900-2200 BC). Antiquity 80, 646-654. https://doi.org/10.1017/S0003598X00094102
Olías, M., y Nieto, J. M. (2015). Background conditions and mining pollution throughout history in the Río Tinto (SW Spain). Environments, 2(3), 295-316. https://doi.org/10.3390/environments2030295
Pérez-López R., Delgado J., Nieto J.M., y Márquez-García B. (2010). Rare earth element geochemistry of sulphide weathering in the São Domingos mine area (Iberian Pyrite Belt): A proxy for fluid-rock interaction and ancient mining pollution. Chemical Geology, 276, 29- 40. https://doi.org/10.1016/j.chemgeo.2010.05.018
Pinedo Vara, I. (1963). Piritas de Huelva. Su Historia, Minería y Aprovechamiento. Ed. Summa, Madrid. 1003 pp.
Sáez, R., Almodóvar, G. R., y Pascual, E. (1996). Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geology Reviews, 11(6), 429-451. https://doi.org/10.1016/S0169-1368(96)00012-1
Schermerhörn, L.J.G. (1971). An outline stratigraphy of the Iberian Pyrite Belt. Boletín Geológico y Minero 82, 239-268.
Taylor, S.R. y McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 1-312.
USGS, 2020. Mineral Commodity Summaries 2020. U.S. Geological Survey, 2020, 204p.
Verplanck, P.L., Antweiler, R.C., Nordstrom, D.K., Taylor, H.E. (2001). Standard reference water samples for rare earth element determinations. Applied Geochemistry 16 (2), 231-244. https://doi.org/10.1016/S0883-2927(00)00030-5
Wallrich, I. L., Stewart, B. W., Capo, R. C., Hedin, B. C., y Phan, T. T. (2020). Neodymium isotopes track sources of rare earth elements in acidic mine waters. Geochimica et Cosmochimica Acta, 269, 465-483. https://doi.org/10.1016/j.gca.2019.10.044
Younger, P.L. (1997). The longevity of minewater pollution: a basis for decision making. Science of the total environment, 194-195, 457-466. https://doi.org/10.1016/S0048-9697(96)05383-1
Zhang, W., y Honaker, R. (2020). Process development for the recovery of rare earth elements and critical metals from an acid mine leachate. Minerals Engineering, 153, 106382. https://doi.org/10.1016/j.mineng.2020.106382
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Until the year 2023 the author assigned the copyright to the Sociedad Geológica de España, but from 2024 the author retains the copyright and grants the Sociedad Geológica de España the right of first publication and non-exclusive distribution of each article in all current or future media, while transferring, also non-exclusively, the commercial rights for the distribution of the printed version of Geogaceta. On the other hand, the articles, from the year 2023, are available simultaneously with their publication, under the Creative Commons CC BY-NC-SA 4.0 license, which allows copying, transforming the work, but if any transformation is distributed, the new work must be distributed under the same license, and never for commercial purposes, while acknowledging the authorship and original publication in GEOGACETA, so that the only role of copyright is to give authors control over the integrity of their works and the right to be properly acknowledged and cited.