Geología y geoquímica de mina Poderosa. Evaluación de la fuente de tierras raras en los drenajes ácidos de mina

Autores/as

  • Rafael León Departamento de Ciencias de la Tierra y Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente. Universidad de Huelva
  • Francisco Macías Departamento de Ciencias de la Tierra y Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente. Universidad de Huelva
  • José María Fuentes Departamento de Ciencias de la Tierra y Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente. Universidad de Huelva
  • José Miguel Nieto Departamento de Ciencias de la Tierra y Centro de Investigación en Recursos Naturales, Salud y Medio Ambiente. Universidad de Huelva

DOI:

https://doi.org/10.55407/geogaceta102294

Palabras clave:

faja Pirítica Ibérica, patrón de REE

Resumen

La Faja Pirítica Ibérica (FPI) es una gran provincia metalogénica de sulfuros, donde se generan alrededor de 1 m3/s de drenajes ácidos de mina (AMD), aportando acidez y metales al medio acuoso, generando una gran preocupación a nivel mundial. Por otro lado, los AMD también han sido considerados recientemente una alternativa estratégica como fuente secundaria de tierras raras (REE), debido a su alta concentración y su enriquecimiento preferencial en REE medias (MREE). El origen de las REE en los AMD es aún incierto, si bien, estudios recientes indican la lixiviación preferencial de fases minerales enriquecidas en MREE durante la interacción agua-roca. Para estudiar dicha interacción en la FPI se ha seleccionado mina Poderosa, por su alto contenido en REE y la disponibilidad de una serie histórica de datos del AMD. En este trabajo, se han realizado estudios preliminares que han permitido determinar las diferentes litologías que constituyen el área de mina Poderosa, y cuál de ellas podría contribuir como fuente de REE a los AMD. De forma preliminar se ha concluido que el aporte de REE al lixiviado debe producirse por la interacción combinada del AMD con diversas fuentes, al no existir muestras con un patrón de REE semejante al AMD.

Citas

Akcil, A., y Koldas, S. (2006). Acid Mine Drainage (AMD): causes, treatment and case studies. Journal of Cleaner Production, 14(12-13), 1139-1145. https://doi.org/10.1016/j.jclepro.2004.09.006

Ayora C., Caraballo M.A., Macías F., Rötting T.S., Carrera J., Nieto J.M. (2013) Acid mine drainage in the Iberian Pyrite Belt: 2. Lessons learned from recent passive remediation experiences. Environmental Science and Pollution Research, 20, 7837-7853. https://doi.org/10.1007/s11356-013-1479-2

Ayora C., Macías F., Torres E., Lozano A., Carrero S., Nieto J.M., Pérez-López R., Fernández- Martínez A., y Castillo-Michel H. (2016). Recovery of Rare Earth Elements and Yttrium from Passive-Remediation Systems of Acid Mine Drainage. Environmental Science and Technology, 50, 8255-8262. https://doi.org/10.1021/acs.est.6b02084

Cánovas, C. R., Macías, F., y Olías, M. (2018). Hydrogeochemical behavior of an anthropogenic mine aquifer: Implications for potential remediation measures. Science of The Total Environment, 636, 85-93. https://doi.org/10.1016/j.scitotenv.2018.04.270

Cánovas, C. R., Macías, F., Olías, M., Basallote, M. D., Pérez-López, R., Ayora, C., y Nieto, J. M. (2020). Release of technology critical metals during sulfide oxidation processes: the case of the Poderosa sulfide mine (south-west Spain). Environmental Chemistry, 17(2), 93-104. https://doi.org/10.1071/EN19118

Da Silva E., Ferreira E., Bobos I., Matos J.X., Patinha C., Reis A.P., y Fonseca E.C. (2009). Mineralogy and geochemistry of trace metals and REE in massive volcanic sulphide host rocks, stream sediments, stream waters and acid mine drainage from the Lousal mine area (Iberian Pyrite Belt, Portugal). Applied geochemistry, 24, 383-401. https://doi.org/10.1016/j.apgeochem.2008.12.001

Gonzalo y Tarín, J. 1888. Descripción física, geológica y minera de la provincia de Huelva. En Memorias de la Comisión del Mapa Geológico de España. Tomo II (Madrid. 660 pp.).

Hedin, B. C., Hedin, R. S., Capo, R. C., y Stewart, B. W. (2020). Critical metal recovery potential of Appalachian acid mine drainage treatment solids. International Journal of Coal Geology, 231, 103610. https://doi.org/10.1016/j.coal.2020.103610

Lottermoser, B. G. (2011). Recycling, reuse and rehabilitation of mine wastes. Elements, 7, 405-410. https://doi.org/10.2113/gselements.7.6.405

Macías, F., Pérez-López, R., Caraballo, M.A., Cánovas, C.R., Nieto, J.M. (2017). Management strategies and valorization for waste sludge from active treatment of extremely metal-polluted acid mine drainage: a contribution for sustainable mining. Journal of Cleaner Production, 141, 1057-1066. https://doi.org/10.1016/j.jclepro.2016.09.181

Moreno, C. (1993). Postvolcanic Paleozoic of the Iberian Pyrite Belt: an example of basin morphologic control on sediment distribution in a turbidite basin. Journal of Sedimentary Petrology 63, 1118-1128. https://doi.org/10.1306/D4267CBC-2B26-11D7-8648000102C1865D

Moreno, C., y Saéz, R. (1990). Sedimentación marina somera en el devónico del Anticlinorio de Puebla de Guzmán, Faja Pirítica Ibérica. Geogaceta 8, 62-64.

Noack, C.W., Dzombak D.A., y Karamalidis A.K. (2014) Rare Earth Element Distributions and Trends in Natural Waters with a Focus on Groundwater. Environmental Science and Technology, 48, 4317- 4326. https://doi.org/10.1021/es4053895

Nocete, F. (2006). The first specialised copper industry in the Iberian Peninsula: Cabezo Jure (2900-2200 BC). Antiquity 80, 646-654. https://doi.org/10.1017/S0003598X00094102

Olías, M., y Nieto, J. M. (2015). Background conditions and mining pollution throughout history in the Río Tinto (SW Spain). Environments, 2(3), 295-316. https://doi.org/10.3390/environments2030295

Pérez-López R., Delgado J., Nieto J.M., y Márquez-García B. (2010). Rare earth element geochemistry of sulphide weathering in the São Domingos mine area (Iberian Pyrite Belt): A proxy for fluid-rock interaction and ancient mining pollution. Chemical Geology, 276, 29- 40. https://doi.org/10.1016/j.chemgeo.2010.05.018

Pinedo Vara, I. (1963). Piritas de Huelva. Su Historia, Minería y Aprovechamiento. Ed. Summa, Madrid. 1003 pp.

Sáez, R., Almodóvar, G. R., y Pascual, E. (1996). Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geology Reviews, 11(6), 429-451. https://doi.org/10.1016/S0169-1368(96)00012-1

Schermerhörn, L.J.G. (1971). An outline stratigraphy of the Iberian Pyrite Belt. Boletín Geológico y Minero 82, 239-268.

Taylor, S.R. y McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 1-312.

USGS, 2020. Mineral Commodity Summaries 2020. U.S. Geological Survey, 2020, 204p.

Verplanck, P.L., Antweiler, R.C., Nordstrom, D.K., Taylor, H.E. (2001). Standard reference water samples for rare earth element determinations. Applied Geochemistry 16 (2), 231-244. https://doi.org/10.1016/S0883-2927(00)00030-5

Wallrich, I. L., Stewart, B. W., Capo, R. C., Hedin, B. C., y Phan, T. T. (2020). Neodymium isotopes track sources of rare earth elements in acidic mine waters. Geochimica et Cosmochimica Acta, 269, 465-483. https://doi.org/10.1016/j.gca.2019.10.044

Younger, P.L. (1997). The longevity of minewater pollution: a basis for decision making. Science of the total environment, 194-195, 457-466. https://doi.org/10.1016/S0048-9697(96)05383-1

Zhang, W., y Honaker, R. (2020). Process development for the recovery of rare earth elements and critical metals from an acid mine leachate. Minerals Engineering, 153, 106382. https://doi.org/10.1016/j.mineng.2020.106382

Descargas

Publicado

2021-12-13

Cómo citar

León, R., Macías, F., Fuentes, J. M., & Nieto, J. M. (2021). Geología y geoquímica de mina Poderosa. Evaluación de la fuente de tierras raras en los drenajes ácidos de mina. Geogaceta, 70, 35–38. https://doi.org/10.55407/geogaceta102294

Número

Sección

Artículos