Video game consumption habits according to weight status and diet quality in primary schoolchildren
Main Article Content
Abstract
INTRODUCTION. To analyse video game consumption habits according to weight status and diet quality in schoolchildren. METHOD. Cross-sectional descriptive study on a sample of 332 Spanish schoolchildren (M ± SD; 11.21 ± 1.42 years). Two questionnaires were used: Questionnaire on video game consumption habits and the KIDMED questionnaire to assess diet quality. Weight status was assessed using the Body Mass Index (kg/m2) adjusted for sex and age. RESULTS. The simple analysis of variance showed significant differences in all dimensions of the habitual video game consumption questionnaire in favour of males (p < .001, for all) and those in overweight. (p < .001, for all) and those in overweight (p < .001, for all). Considering diet quality and, this in interaction with weight status, significant differences were found in the factors of interference of video games with other activities (p < .05) and index of habitual consumption of video games (p < .05) in favour of those with improved diet quality and, this in interaction with the variable weight overload-improved diet quality, respectively. This relationship was maintained after multinomial logistic regression test where being overweight and having an improved diet quality is associated with a higher likelihood of consuming video games and having video game interference with other activities than their normal weight/optimal CD peers (R2 = .199). DISCUSSION. Weight status and diet quality appear to be predictors of video game consumption in the sample studied, especially in males. More research is needed on those factors related to high screen consumption in order to carry out actions that have an impact on the health of schoolchildren.
Downloads
Article Details
References
Becerra, F. L. (2012). Construcción y validación de un cuestionario sobre los hábitos de consumo de videojuegos en preadolescentes. Edutec. Revista Electrónica de Tecnología Educativa, 40, 197-198. https://doi.org/10.21556/edutec.2012.40.361
Carrillo-López, P. J. y Prieto, F. J. (2020). Niveles de ansiedad según el estado de peso y la calidad de la dieta durante el estado de alarma en escolares de Primaria. Nutrición Clínica y Dietética Hospitalaria, 40(3).
Chacón-Cuberos, R., Castro-Sánchez, M., Muros-Molina, J. J., Espejo-Garcés, T., Zurita-Ortega, F. y Linares-Manrique, M. (2016). Adhesión a la dieta mediterránea en estudiantes universitarios y su relación con los hábitos de ocio digital. Nutrición Hospitalaria, 33(2), 405-410. https://doi.org/10.20960/nh.124
Chen, H., Cohen, P. y Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes of odds ratios in epidemiological studies. Communications in Statistics-simulation and Computation, 39(4), 860-864.
Chóliz, M. y Marco, C. (2011). Patrón de uso y dependencia de videojuegos en infancia y adolescencia. Anales de Psicología, 27(2), 418-426.
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155-159. https://doi.org/10.1037/0033-2909.112.1.155
Cole. T. J. y Lobstein. T. (2012). Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatric Obesity, 7(4), 284-294. https://doi.org/10.1111/j.2047-6310.2012.00064.x
Cumming, G. y Calin-Jageman, R. (2016). Introduction to the new statistics: Estimation, open science, and beyond. Routledge.
Epstein, L. H., Roemmich, J. N., Robinson, J. L., Paluch, R. A. y Winiewicz, D. D. (2008). A randomized trial of the effects of reducing television viewing and computer use on body mass index in young children. Archives of Pediatrics and Adolescent Medicine Journal, 162, 239-245. https://doi.org/10.1001/archpediatrics.2007.45
Falbe, J., Rosner, B., Willett, W. C., Sonneville, K. R., Hu, F. B. y Field, A. E. (2013). Adiposity and different types of screen time. Pediatrics, 132(6), e1497-e1505. https://doi.org/10.1542/peds.2013-0887
Falbe, J., Willett, W. C., Rosner, B., Gortmaker, S. L., Sonneville, K. R. y Field, A. E. (2014). Longitudinal relations of television, electronic games, and digital versatile discs with changes in diet in adolescents. The American Journal of Clinical Nutrition, 100(4), 1173-1181. https://doi.org/10.3945/ajcn.114.088500
Fang, K., Mu, M., Liu, K. y He, Y. (2019). Screen time and childhood overweight/obesity: A systematic review and meta-analysis. Child: Care, Health and Development, 45(5), 744-753. https://doi.org/10.1111/cch.12701
Fletcher, E. A., McNaughton, S. A., Crawford, D., Cleland, V., Della Gatta, J., Hatt, J. y Timperio, A. (2018). Associations between sedentary behaviours and dietary intakes among adolescents.
Public Health Nutrition, 21(6), 1115-1122. https://doi.org/10.1017/S136898001700372X
Fulton, J. E., Wang, X., Yore, M. M., Carlson, S. A., Galuska, D. A. y Caspersen, C. J. (2009). Television viewing, computer use, and BMI among US children and adolescents. Journal of Physical Activity and Health, 6(s1), 28-35. https://doi.org/10.1123/jpah.6.s1.s28
Lissak, G. (2018). Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environmental Research, 164, 149-157. https://doi.org/10.1016/j.envres.2018.01.015
Mielgo-Ayuso, J., Aparicio-Ugarriza, R., Castillo, A., Ruiz, E., Ávila, J. M., Aranceta-Bartrina, J. y González-Gross, M. (2017). Sedentary behavior among Spanish children and adolescents: findings from the ANIBES study. BMC Public Health, 17(1), 1-9. https://doi.org/10.1186/s12889-017-4026-0
Organización Mundial de la Salud (2020). Directrices sobre actividad física y comportamiento sedentario. Biblioteca de la Organización Mundial de la Salud.
Pearson, N., Griffiths, P., Biddle, S. J., Johnston, J. P., McGeorge, S. y Haycraft, E. (2017). Clustering and correlates of screen-time and eating behaviours among young adolescents. BMC Public Health, 17(1), 1-12. https://doi.org/10.1186/s12889-017-4441-2
Pérez-Farinós, N., Villar-Villalba, C., Sobaler, A. M., Saavedra, M. Á., Aparicio, A., Sanz, S. S. y Anta, R. M. (2017). The relationship between hours of sleep, screen time and frequency of food and drink consumption in Spain in the 2011 and 2013 ALADINO: a cross-sectional study. BMC public health, 17(1), 1-12. https://doi.org/10.1186/s12889-016-3962-4
Saavedra, E. (2020). Validación del cuestionario sobre hábitos de consumo de videojuegos en chilenos millennials. Anagramas: Rumbos y Sentidos de la Comunicación, 18(36), 43-55. https://doi.org/10.22395/angr.v18n36a3
Sánchez, A. L., Ortega, F. Z., Jiménez, J. L. U., Molero, P. P., Granizo, I. R. y Quiroga, J. I. N. (2019). Videojuegos, práctica de actividad física, obesidad y hábitos sedentarios en escolares de entre 10 y 12 años de la provincia de Granada. Retos: Nuevas Tendencias en Educación Física, Deporte y Recreación, 35, 42-46. https://doi.org/10.47197/retos.v0i35.61865
Serra-Majem, L., Ribas, L., Ngo, J., Ortega, R. M., García, A., Pérez-Rodrigo, C. y Aranceta, J. (2004). Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutrition, 7(7), 931-935. https://doi.org/10.1079/PHN2004556
Shang, L., Wang, J., O’Loughlin, J., Tremblay, A., Mathieu, M. È., Henderson, M. y Gray-Donald, K. (2015). Screen time is associated with dietary intake in overweight Canadian children. Preventive Medicine Reports, 2, 265-269. https://doi.org/10.1016/j.pmedr.2015.04.003
Shi, L. y Mao, Y. (2010). Excessive recreational computer use and food consumption behaviour among adolescents. Italian Journal of Pediatrics, 36(1), 1-4. https://doi.org/10.1186/1824-7288-36-52
Silva, K. S., Da Silva Lopes, A., Dumith, S. C., Garcia, L. M. T., Bezerra, J. y Nahas, M. V. (2014). Changes in television viewing and computers/videogames use among high school students in Southern Brazil between 2001 and 2011. International Journal of Public Health, 59(1), 77-86. https://doi.org/10.1007/s00038-013-0464-3
Stamatakis, E., Coombs, N., Jago, R., Gama, A., Mourão, I., Nogueira, H. y Padez, C. (2013). Type-specific screen time associations with cardiovascular risk markers in children. American Journal of Preventive Medicine, 44(5), 481-488. https://doi.org/10.1016/j.amepre.2013.01.020