Multianalytical characterization of Lanzarote basalts as a regolith simulant and lunar habitability resource

Authors

  • Fernando Alberquilla Instituto de Geociencias (CSIC-UCM) y Dpto. Química Física (Universidad Complutense de Madrid), Madrid.
  • Jesús Martínez-Frías Dpto. Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid
  • Rosario Lunar Instituto de Geociencias, IGEO (CSIC-UCM), Madrid.
  • Valentín García-Baonza Instituto de Geociencias (CSIC-UCM) y Dpto. Química Física (Universidad Complutense de Madrid), Madrid.

DOI:

https://doi.org/10.55407/geogaceta98030

Keywords:

Lanzarote, habitability, terrestrial analogs, regolith, basalts, regolith simulant

Abstract

The search for Terrestrial Analogues is essential for the development of future permanent or semi-permanent lunar bases. Terrestrial Analogues are zones where it is possible to probe not only scientific instruments but also to other astronaut capabilities in an environment that is similar to the geological context, geomorphology, mineralogical, geochemistry, etc that we can find on Mars, the Moon and even asteroids. This work has focused on a multi- analytical characterization of three Lanzarote regions (Maciot, Tao y Lavas de Timanfaya), with different geochemical and petrophysical test. These results have been compared with data provided by other authors on samples brought from the Apollo missions. This has allowed to determine the analogy between the study regions and the Apollo 14 moon landing site known as Fra-Mauro formation. In addition, it is concluded which resources are potentially extractable from the Moon regolith and its function in a future semipermanent lunar base. Finally, it is proposed the possibility of developing the first Spanish lunar soil simulant through one of the Lanzarote basalts.

References

Alberquilla, F. (2021a). International Journal of Earth Sciences, 111, 589-590. https://doi.org/10.1007/s00531-021-02121-w

Alberquilla, F. (2021b). Multianalytical characterization of Lanzarote basalts as a prototype of lunar habitability resource, Hydrocarbon Exploration and Mineral Resources thesis, Complutense University of Madrid (UCM), 51 p.

Caruso, J., Spina, D., Greer, L., John, W., y Michele, C. (2008). In 46th AIAA Aerospace Sciences Meeting and Exhibit (p. 808).

Dickinson, T., Taylor, G. J., Keil, K., Schmitt, R. A., Hughes, S. S., y Smith, M. R. (1985). Journal of Geophysical Research: Solid Earth, 90(S02), C365-C374. https://doi.org/10.1029/JB090iS02p0C36

Evensen, N. M., Hamilton, P. J., y O'nions, R. K. (1978). Geochimica et cosmochimica Acta, 42(8), 1199-1212. https://doi.org/10.1016/0016-7037(78)90114-X

Gibson, M. A., y Knudsen, C. W. (1985). In Lunar bases and space activities of the 21st century, p. 543.

Giguere, T. A., Taylor, G. J., HAWKE, B. R., y Lucey, P. G. (2000). Meteoritics & Planetary Science, 35(1), 193-200. https://doi.org/10.1111/j.1945-5100.2000.tb01985.x

Kiefer, W. S., Macke, R. J., Britt, D. T., Irving, A. J., y Consolmagno, G. J. (2012). The density and porosity of lunar rocks. Geophysical Research Letters, 39(7). https://doi.org/10.1029/2012GL051319

Lanzarote and Chinijo Islands Geopark (2014) https://www.geoparquelanzarote.org/geositios/. Accessed 26 July 2020

Lindstrom, M. M., Crozaz, G., y Zinner, E. (1985). In Lunar and Planetary Science Conference (Vol. 16, pp. 493-494).

Martínez Frías, J., Mateo Mederos, M., y Lunar Hernández, R. (2016). Geotemas, 16(2), 343.

Martínez Frías, J. (2020). Canarias: Una plataforma geológica y astrobiológica mundial para la Luna y Marte. Investigación y Ciencia. https://www.investigacionyciencia.es/blogs/astronomia/71/posts/canarias-una-plataforma-geolgica-y-astrobiolgica-mundial-para-la-luna-y-marte-18809 (28, nov., 2022).

Martínez J. E, y Mariñoso P.E. (2020). International Journal of Earth Sciences, 109(8), 2697-2698. https://doi.org/10.1007/s00531-020-01925-6

Muhs, D. R., Budahn, J., Skipp, G., Prospero, J. M., Patterson, D., y Bettis III, E. A. (2010). G Terra Nova, 22(6), 399-410. https://doi.org/10.1111/j.1365-3121.2010.00949.x

Neal, C. R., y Taylor, L. A. (1992). Geochimica et Cosmochimica Acta, 56(6), 2177-2211. https://doi.org/10.1016/0016-7037(92)90184-K

Papike, J. J. (Ed.). (2018). Planetary materials (Vol. 36). Walter de Gruyter GmbH y Co KG. Chapter 5 (5-161).

Rodríguez-Losada, J. A., Hernández-Fernández, S., Martínez-Frías, J., Hernández, L. E., y Lunar Hernández, R. (2010). In ISRM International Workshop on Rock Mechanics and Geoengineering in Volcanic Environments. OnePetro.

Taylor, G. J., Martel, L. M., Lucey, P. G., Gillis-Davis, J. J., Blake, D. F., y Sarrazin, P. (2019). Modal analyses of lunar soils by quantitative X-ray diffraction analysis. Geochimica et Cosmochimica Acta, 266, 17-28. https://doi.org/10.1016/j.gca.2019.07.046

Warner, R. D., Taylor, G. J., Conrad, G. H., Northrop, H. R., Barker, S., Keil, K., ... y Schmitt, R. (1979). Apollo 17 high-Ti mare basalts-New bulk compositional data, magma types, and petrogenesis. In Lunar and Planetary Science Conference Proceedings (Vol. 10, pp. 225-247).

Yilmaz, N. G., y Goktan, R. M. (2019). Bulletin of Engineering Geology and the Environment, 78(6), 4493-4503. https://doi.org/10.1007/s10064-018-1382-7

Zheng, Y., Wang, S., Ouyang, Z., Zou, Y., Liu, J., Li, C., ... y Feng, J. (2009). CAS-1 lunar soil simulant. Advances in Space Research, 43(3), 448-454. https://doi.org/10.1016/j.asr.2008.07.006

Published

2022-12-11

How to Cite

Alberquilla, F., Martínez-Frías, J., Lunar, R., & García-Baonza, V. (2022). Multianalytical characterization of Lanzarote basalts as a regolith simulant and lunar habitability resource. GEOGACETA, 72, 51–54. https://doi.org/10.55407/geogaceta98030

Issue

Section

Artículos

Most read articles by the same author(s)