Implementation of hydrogeochemical and geothermometric methods to the study of the geothermal potential of southern Tenerife.
DOI:
https://doi.org/10.55407/geogaceta95147Keywords:
Tenerife, Hydrogeochemistry, Geothermometers, ChalcedonyAbstract
This study shows the southern Tenerife context and its high gothermal potential. Firsty, a groundwater hydrogeochemical análisis is carried out, based on the Piper diagram, the Giggenbach triangle diagram to the Log (K² /Ca) vs. Log (K² /Mg) diagram. Thus, the bicarbonate-sodium rich character of the waters is defined as well as a different advance in the maturity path of the waters. To conclude, the silica geothermometer is applied, to be precise, the chalcedony polymorph one. Then, reliable temperatures at which the aquifer could be are estimated.
References
Anguita, F., y Hernán, F. (2000). The Canary Islands origin: a unifying model. Journal of Volcanology and Geothermal Research, 103(1-4), 1-26. https://doi.org/10.1016/S0377-0273(00)00195-5
Armorsson, S., Gunnlaugsson, E., y Svavarsson, H. (1983). The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochimica et Cosmochimica Acta, 47(3), 567-577. https://doi.org/10.1016/0016-7037(83)90278-8
Carracedo, J. C., y Troll, V. R. (2016). The geology of the Canary Islands, 636 p.
Carracedo, J. C., Badiola, E. R., Guillou, H., Paterne, M., Scaillet, S., Torrado, F. P., ... y Hansen, A. (2007). Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. Geological Society of America Bulletin, 119 (9-10), 1027-1051.
Consejo Insular de Aguas de Tenerife (2018). Plan Hidrológico de Tenerife. Demarcación Hidrográfica ES124 Tenerife. Ciclo de planificación Hidrológica 2015-2021. B26087.1
Fournier, R. O. (1977). Chemical geothermometers and mixing models for geothermal systems. Geothermics 5(1-4), 41-50. https://doi.org/10.1016/0375-6505(77)90007-4
Geyer, A. y Martí, J. (2010). The distribution of basaltic volcanism on Tenerife, Canary Islands: Implications on the origin and dynamics of the rift systems. Tectonophysics 483(3-4), 310-326. https://doi.org/10.1016/j.tecto.2009.11.002
Giggenbach W.F. (1988): Geothermal solute equilibria. Geochimica. Cosmochim. Acta 52, 2749 - 2765. https://doi.org/10.1016/0016-7037(88)90143-3
Karingithi, C. W. (2009). Chemical geothermometers for geothermal exploration. Short Course IV on Exploration for Geothermal Resources, 1-22
Marrero Díaz, R. (2010). Modelo hidrogeoquímico del acuífero de las cañadas del Teide, Tenerife, Islas Canarias. Universitat Politècnica de Catalunya. Tesis Doctoral.
Moreno, L., y De la Losa, A. (2008). INAQUAS: Utilidad para la interpretación de análisis químicos de aguas subterráneas. Publicaciones del Instituto Geológico y Minero de España, Madrid, 1-28.
Downloads
Published
How to Cite
Issue
Section
License
Until the year 2023 the author assigned the copyright to the Sociedad Geológica de España, but from 2024 the author retains the copyright and grants the Sociedad Geológica de España the right of first publication and non-exclusive distribution of each article in all current or future media, while transferring, also non-exclusively, the commercial rights for the distribution of the printed version of Geogaceta. On the other hand, the articles, from the year 2023, are available simultaneously with their publication, under the Creative Commons CC BY-NC-SA 4.0 license, which allows copying, transforming the work, but if any transformation is distributed, the new work must be distributed under the same license, and never for commercial purposes, while acknowledging the authorship and original publication in GEOGACETA, so that the only role of copyright is to give authors control over the integrity of their works and the right to be properly acknowledged and cited.