Implementation of hydrogeochemical and geothermometric methods to the study of the geothermal potential of southern Tenerife.

Authors

  • África Gamisel Muzás Universidad Complutense de Madrid
  • Antonio José Olaiz Campos Repsol Exploración S.A, C.
  • Álvaro Arnáiz Giménez-Coral Repsol Exploración S.A, C.
  • Axel García Craviotto Repsol Exploración S.A, C.

DOI:

https://doi.org/10.55407/geogaceta95147

Keywords:

Tenerife, Hydrogeochemistry, Geothermometers, Chalcedony

Abstract

This study shows the southern Tenerife context and its high gothermal potential. Firsty, a groundwater hydrogeochemical análisis is carried out, based on the Piper diagram, the Giggenbach triangle diagram to the Log (K² /Ca) vs. Log (K² /Mg) diagram. Thus, the bicarbonate-sodium rich character of the waters is defined as well as a different advance in the maturity path of the waters. To conclude, the silica geothermometer is applied, to be precise, the chalcedony polymorph one. Then, reliable temperatures at which the aquifer could be are estimated.

References

Anguita, F., y Hernán, F. (2000). The Canary Islands origin: a unifying model. Journal of Volcanology and Geothermal Research, 103(1-4), 1-26. https://doi.org/10.1016/S0377-0273(00)00195-5

Armorsson, S., Gunnlaugsson, E., y Svavarsson, H. (1983). The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochimica et Cosmochimica Acta, 47(3), 567-577. https://doi.org/10.1016/0016-7037(83)90278-8

Carracedo, J. C., y Troll, V. R. (2016). The geology of the Canary Islands, 636 p.

Carracedo, J. C., Badiola, E. R., Guillou, H., Paterne, M., Scaillet, S., Torrado, F. P., ... y Hansen, A. (2007). Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. Geological Society of America Bulletin, 119 (9-10), 1027-1051.

Consejo Insular de Aguas de Tenerife (2018). Plan Hidrológico de Tenerife. Demarcación Hidrográfica ES124 Tenerife. Ciclo de planificación Hidrológica 2015-2021. B26087.1

Fournier, R. O. (1977). Chemical geothermometers and mixing models for geothermal systems. Geothermics 5(1-4), 41-50. https://doi.org/10.1016/0375-6505(77)90007-4

Geyer, A. y Martí, J. (2010). The distribution of basaltic volcanism on Tenerife, Canary Islands: Implications on the origin and dynamics of the rift systems. Tectonophysics 483(3-4), 310-326. https://doi.org/10.1016/j.tecto.2009.11.002

Giggenbach W.F. (1988): Geothermal solute equilibria. Geochimica. Cosmochim. Acta 52, 2749 - 2765. https://doi.org/10.1016/0016-7037(88)90143-3

Karingithi, C. W. (2009). Chemical geothermometers for geothermal exploration. Short Course IV on Exploration for Geothermal Resources, 1-22

Marrero Díaz, R. (2010). Modelo hidrogeoquímico del acuífero de las cañadas del Teide, Tenerife, Islas Canarias. Universitat Politècnica de Catalunya. Tesis Doctoral.

Moreno, L., y De la Losa, A. (2008). INAQUAS: Utilidad para la interpretación de análisis químicos de aguas subterráneas. Publicaciones del Instituto Geológico y Minero de España, Madrid, 1-28.

Published

2023-06-05

How to Cite

Gamisel Muzás, África, Olaiz Campos, A. J., Arnáiz Giménez-Coral, Álvaro, & García Craviotto, A. (2023). Implementation of hydrogeochemical and geothermometric methods to the study of the geothermal potential of southern Tenerife. GEOGACETA, 73, 23–26. https://doi.org/10.55407/geogaceta95147

Issue

Section

Artículos