Determinants in the choice of non-compulsory science subjects

Main Article Content

Radu Bogdan Toma
Iraya Yánez-Pérez

Abstract

Introduction: The curricular structure provides the option to forego scientific subjects in the final year of compulsory secondary education. This decision can prematurely disrupt formal engagement with these disciplines, typically around the ages of 14-15. Therefore, it is crucial to identify attitudinal factors that influence the selection of elective science subjects at an early age. This research focuses on two key constructs: the perception of difficulty and the associated costs of studying sciences and mathematics. Methodology: The sample comprised 214 students from 4th to 6th grade of primary education. A non-probability convenience sampling method was used to select the participants. A Likert-type instrument was administered, and its validity and reliability were assessed, proving adequate for the current sample. Data were analyzed using inferential statistics and a hierarchical logistic regression model. Results: A high percentage of students, ranging from 60.2% to 79.7%, exhibited a low interest in choosing elective science subjects during secondary education. The primary reason for this lack of interest is the perceived difficulty associated with these disciplines. Unexpectedly, the perceived cost of studying sciences increases students' intentions, which can be explained by various theories, such as expectancy-value theory, growth mindset theory, or self-determination theory. In contrast, neither the perceived cost nor difficulty of mathematics influences students' intentions to pursue this field. Conclusions: These findings are discouraging and highlight the urgency of designing and implementing educational programs targeted at the primary education stage to address and reverse this trend.


Keywords: student attitude, learning difficulties, natural sciences, mathematics, elementary school, choice of
studies, science education, science education

Article Details

How to Cite
Toma, R. B., & Yánez-Pérez, I. (2025). Determinants in the choice of non-compulsory science subjects. Revista De Educación, 409, 391–410. https://doi.org/10.4438/1988-592X-RE-2025-409-698
Section
Research
Author Biography

Radu Bogdan Toma, Universidad de Burgos

Facultad de Educación. Departamento de Didácticas Específicas. Área de Didáctica de las Ciencias Experimentales.

Funding data

References

Abiétar López, M., Bernad i Garcia, J. C., Córdoba Iñesta, A. I., Giménez Urraco, E., Meri Crespo, E., y Navas Saurin, A. A. (2023). Factores diferenciales en los itinerarios en Formación Profesional: un estudio longitudinal. Revista de Educación, 401, 155–178. https://doi.org/10.4438/1988-592X-RE-2023-401-587

Barron, K. E., y Hulleman, C. S. (2015). Expectancy-Value-Cost Model of Motivation. International Encyclopedia of the Social y Behavioral Sciences: Second Edition, 503–509. https://doi.org/10.1016/B978-0-08-097086-8.26099-6

Besley, J. C. (2018). The National Science Foundation’s science and technology survey and support for science funding, 2006–2014. Public Understanding of Science, 27(1), 94–109. https://doi.org/10.1177/0963662516649803

Bidegain, G., y Lukas Mujika, J. F. (2020). Exploring the relationship between attitudes toward science and PISA scientific performance. Revista de Psicodidáctica, 25(1), 1–12. https://doi.org/10.1016/j.psicoe.2019.08.002

Bybee, R. W., y McCrae, B. (2011). Scientific literacy and student attitudes: Perspectives from pisa 2006 science. International Journal of Science Education, 33(1), 7–26. https://doi.org/10.1080/09500693.2010.518644

Carrasquilla, O. M., Pascual, E. S., y Roque, I. M. S. (2022). La brecha de género en la Educación STEM. Revista de Educacion, 2022(396), 149–172. https://doi.org/10.4438/1988-592X-RE-2022-396-533

Chi, S., Wang, Z., Liu, X., y Zhu, L. (2017). Associations among attitudes, perceived difficulty of learning science, gender, parents’ occupation and students’ scientific competencies. International Journal of Science Education, 39(16), 2171–2188. https://doi.org/10.1080/09500693.2017.1366675

Dapía, M., Escudero-Cid, R., y Vidal, M. (2019). ¿Tiene género la ciencia? Conocimientos y actitudes hacia la Ciencia en niñas y niños de Educación Primaria. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 16(3), 3201. https://doi.org/10.25267/Rev_Eureka_ensen_divulg_cienc.2019.v16.i3.3302

Dweck, C. S. (2006). Mindset: The new psychology of success. Random House.

Eccles, J. S., y Wigfield, A. (2023). Expectancy-value theory to situated expectancy-value theory: Reflections on the legacy of 40+ years of working together. Motivation Science, 9(1), 1–12. https://doi.org/10.1037/mot0000275

Ellis, J., Fosdich, B. K., y Rasmussen, C. (2016). Women 1.5 times mor elikely to leave STEM pipeline after calculus compared to men: Lack of matehamtical confidence a potential culprit. PLoS ONE, 11(7), e0157447. https://doi.org/journal.pone.0157447

Ferrando, P. J., Lorenzo-Seva, U., Hernández-Dorado, A., y Muñiz, J. (2022). Decálogo para el análisis factorial de los ítems de un test [Decalogue for the factor analysis of test items]. Psicothema, 34(1), 7–17. https://doi.org/10.7334/psicothema2021.456

Flake, J. K., Barron, K. E., Hulleman, C., McCoach, B. D., y Welsh, M. E. (2015). Measuring cost: The forgotten component of expectancy-value theory. Contemporary Educational Psychology, 41, 232–244. https://doi.org/10.1016/j.cedpsych.2015.03.002

Hayes, A. F., y Coutts, J. J. (2020). Use Omega rather than Cronbach’s Alpha for estimating reliability. But…. Communication Methods and Measures, 14(1), 1–24. https://doi.org/10.1080/19312458.2020.1718629

Iacobucci, D., Posavac, S. S., Kardes, F. R., Schneider, M. J., y Popovich, D. L. (2015). The median split: Robust, refined, and revived. Journal of Consumer Behaviour, 25(4), 690–704. https://doi.org/https://doi.org/10.1016/j.jcps.2015.06.014

Jiang, Y., y Rosenzweig, E. Q. (2021). Using cost to improve predictions of adolescent students’ future choice intentions, avoidance intentions, and course grades in mathematics and English. Learning and Individual Differences, 86(February), 101978. https://doi.org/10.1016/j.lindif.2021.101978

Miller, B. (2021). Developing interest in STEM careers: The need to incorporate STEM in early education. School Science and Mathematics, 10–11. https://doi.org/10.1111/ssm.12497

Mrazek, A. J., Ihm, E. D., Molden, D. C., Mrazek, M. D., Zedelius, C. M., y Schooler, J. W. (2018). Expanding minds: Growth mindsets of self-regulation and the influences on effort and perseverance. Journal of Experimental Social Psychology, 79(June), 164–180. https://doi.org/10.1016/j.jesp.2018.07.003

Muenks, K., Miller, J. E., Schuetze, B. A., y Whittaker, T. A. (2023). Is cost separate from or part of subjective task value? An empirical examination of expectancy-value versus expectancy-value-cost perspectives. Contemporary Educational Psychology, 72, 102149. https://doi.org/10.1016/j.cedpsych.2023.102149

Newell, A. D., Zientek, L. R., Tharp, B. Z., Vogt, G. L., y Moreno, N. P. (2015). Students’ attitudes toward science as predictors of gains on student content knowledge: Benefits of an after-school program. School Science and Mathematics, 115(5), 216–225. https://doi.org/10.1111/ssm.12125

Ogundimu, E. O., Altman, D. G., y Collins, G. S. (2016). Adequate sample size for developing prediction models is not simply related to events per variable. Journal of Clinical Epidemiology, 76, 175–182. https://doi.org/10.1016/j.jclinepi.2016.02.031

Ong, A. K. S., Prasetyo, Y. T., Pinugu, J. N. J., Chuenyindee, T., Chin, J., y Nadlifatin, R. (2022). Determining factors influencing students’ future intentions to enroll in chemistry-related courses: integrating self-determination theory and theory of planned behavior. International Journal of Science Education, 44(4), 556–578. https://doi.org/10.1080/09500693.2022.2036857

Pattal, E. A., Hooper, S., Vasquez, A. C., Pituch, K. A., y Steingut, R. R. (2018). Science class is too hard: Perceived difficulty, disengagement, and the role of teacher autonomy support from a daily diary perspective. Learning and Instruction, 58, 220–231. https://doi.org/10.1016/j.learninstruc.2018.07.004

Robles, A., Solbes, J., Cantó, J. R., y Lozano, Ó. R. (2015). Actitudes de los estudiantes hacia la ciencia escolar en el primer ciclo de la Enseñanza Secundaria Obligatoria. Revista Electrónica de Enseñanza de Las Ciencias, 14(3), 361–376.

Ryan, R. M., y Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78. https://doi.org/10.1037110003-066X.55.1.68

Tytler, R., y Ferguson, J. P. (2023). Student attitudes, identity, and aspirations toward science. In N. G. Lederman, D. L. Zeidler, y J. S. Lederman (Eds.), Handbook of Research on Science Education, Volume III (pp. 158–192). Routledge.

Wang, M. T., y Degol, J. (2013). Motivational pathways to STEM career choices: Using expectancy-value perspective to understand individual and gender differences in STEM fields. Developmental Review, 33(4), 304–340. https://doi.org/10.1016/j.dr.2013.08.001