Preliminary analysis of the determining factors of karst springs temperature in Andalusia

Authors

  • Francisco Moral Martos Universidad Pablo de Olavide, Sevilla
  • José Luis Yanes Conde Universidad Pablo de Olavide, Sevilla

DOI:

https://doi.org/10.55407/geogaceta102295

Keywords:

water temperature, karstic springs, thermal budget

Abstract

Water temperature in 40 springs that drain the most important karst massifs in Andalusia is between 9.8 and 27.5 °C; nevertheless, 75% of flow drained by these aquifers has a temperature from 12 to 18 °C. Water temperature is similar to the mean environmental temperature (lapse rate of -0.49 °C/100m), although there are small differences, often in the range of ± 3 °C. It is observed that springs located at higher elevations have colder waters than the environmental average, while springs that are at lower elevations, have waters relatively warmer. These variations would be related to the control exerted by different variables, such as geology, climate, the degree of karstification of materials and the rate of recharge, on the temperature of groundwater. Likewise, a preliminary thermal budget has been established, which considers the main sources of heat in the water and highlights the importance of air flow in heat transport in the vadose zone.

References

Anderson, M.P. (2005). Heat as a Ground Water Tracer. Ground Water, 43-6, 951-968. https://doi.org/10.1111/j.1745-6584.2005.00052.x

Badino, G. (2010). Underground meteorology: What's the weather underground? Acta Carsologica, 29-3, 427-448. https://doi.org/10.3986/ac.v39i3.74

Benavente, J., Pulido-Bosh, A., Fernández-Rubio, R. (1986). Les grands caractères de l'hydrogéologie karstique dans les Cordillères Bétiques. Karstologia Mémories, 1, 87-89.

Brookfield, A.E., Macpherson, G.L., Covington, M.D. (2017). Effects of Changing Meteoric Precipitation Patterns on Groundwater Temperature in Karst Environments. Ground Water, 55-2, 227-36. https://doi.org/10.1111/gwat.12456

Colmenar-Santos, A., Folch, M., Rosales, E., Borge, D. (2016). The geotermal potential in Spain, Renewable and Sustainable Energy Reviews, 56, 865-886. https://doi.org/10.1016/j.rser.2015.11.070

Luetscher, M., Jeannin, P.Y. (2004). Temperature distribution in karst systems: the role of air and water fluxes. Terra Nova, 16-6, 344-350. https://doi.org/10.1111/j.1365-3121.2004.00572.x

Manga, M., Kirchner, J.W. (2004). Interpreting the temperature of water at cold springs and the importance of gravitational potential energy. Water Resources Research, 40. https://doi.org/10.1029/2003WR002905

MAGRAMA (2013). Sistema de Información Geográfica de Datos Agrarios (SIGA). Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente, Madrid.

Moral, F. (2005). Contribución al conocimiento de los acuíferos carbonáticos de la Sierra de Segura (Alto Guadalquivir y Alto Segura). Tesis Doctoral, Univ. Pablo de Olavide, 580 pp.

Schöeller, H. (1962). Les eaux souterraines. Ed. Masson, Paris, 642 pp.

Published

2021-12-13

How to Cite

Moral Martos, F., & Yanes Conde, J. L. (2021). Preliminary analysis of the determining factors of karst springs temperature in Andalusia. GEOGACETA, 70, 39–42. https://doi.org/10.55407/geogaceta102295

Issue

Section

Artículos