Guía rápida para el estudio de rocas deformadas a partir del análisis de la Anisotropía de la Susceptiblidad Magnética (ASM)

Autores/as

  • Ruth Soto Instituto Geológico y Minero de España (IGME, CSIC)
  • Antonio M. Casas-Sainz Instituto Geológico y Minero de España (IGME, CSIC)
  • Belén Oliva-Urcia Universidad Autónoma de Madrid
  • Teresa Román-Berdiel Geotransfer (IUCA), Universidad de Zaragoza

DOI:

https://doi.org/10.55407/rsge.94884

Palabras clave:

anisotropía de la susceptibilidad magnética, rocas deformadas, deformación, elipsoide magnético, fábrica magnética

Resumen

El análisis de la Anisotropía de la Susceptibilidad Magnética (ASM) constituye una técnica rápida y no destructiva muy valiosa en geología estructural y tectónica, ya que es capaz de proporcionar información relacionada con la orientación e intensidad del elipsoide de deformación en rocas deformadas. Parte de sus ventajas son, su capacidad para (i) caracterizar rocas muy débilmente deformadas, y (ii) integrar gran cantidad de datos provenientes de grandes áreas. Desde los trabajos pioneros de los años 1950s, gran cantidad de trabajos han utilizado esta técnica en diferentes áreas de las Ciencias de la Tierra y aplicada a, prácticamente, todos los tipos de rocas existentes tanto en edad como litología. En este trabajo exploramos y mostramos el uso actual de esta técnica en geología estructural y tectónica, así como sus beneficios y limitaciones.

Citas

Almqvist, B.S., Koyi, H., 2018. Bulk strain in orogenic wedges based on insights from magnetic fabrics in sandbox models. Geology, 46(6): 483-486. https://doi.org/10.1130/G39998.1

Antolín-Tomás, B., Roman-Berdiel, T., Casas-Sainz, A., Gil-Peña, I., Oliva, B., Soto, R., 2009. Structural and Magnetic Fabric Study of the Marimanha Granite (Axial Zone of the Pyrenees). International Journal of Earth Sciences, 98(2): 427-441. https://doi.org/10.1007/s00531-007-0248-1

Aranguren, A., Cuevas, J., Tubía, J.M., Román-Berdiel, T., Casas-Sainz, A., Casas-Ponsati, A., 2003. Granite laccolith emplacement in the Iberian arc: AMS and gravity study of the La Tojiza pluton (NW Sapin). J. Geol. Soc. London, 160: 435-445. https://doi.org/10.1144/0016-764902-079

Barcos, L., Balanyá, J. C., Díaz-Azpiroz, M., Expósito, I., Jiménez-Bonilla, A., 2015. Kinematics of the Torcal Shear Zone: Transpressional tectonics in a salient-recess transition at the northern Gibraltar Arc. Tectonophysics, 663: 62-77. https://doi.org/10.1016/j.tecto.2015.05.002

Bascou, J., Camps, P., Dautria, J.M., 2005. Magnetic versus crystallographic fabrics in a basaltic lava flow. Journal of Volcanology and Geothermal Research, 145(1): 119-135. https://doi.org/10.1016/j.jvolgeores.2005.01.007

Benn, K., 1994. Overprinting of magnetic fabrics in granites by small strains: numerical modelling. Tectonophysics, 233(3-4): 153-162. https://doi.org/10.1016/0040-1951(94)90238-0

Biedermann, A.R., 2018. Magnetic anisotropy in single crystals: A review. Geosciences, 8(8): 302. https://doi.org/10.3390/geosciences8080302

Biedermann, A.R., 2020. FinIrrSDA: A 3-D model for magnetic shape and distribution anisotropy of finite irregular arrangements of particles with different sizes, geometries, and orientations. Journal of Geophysical Research: Solid Earth, 125(12): e2020JB020300. https://doi.org/10.1029/2020JB020300

Biedermann, A.R., Kunze, K., Hirt, A.M., 2018. Interpreting magnetic fabrics in amphibole-bearing rocks. Tectonophysics, 722: 566-576. https://doi.org/10.1016/j.tecto.2017.11.033

Bilardello, D., 2015. Isolating the anisotropy of the characteristic remanence-carrying hematite grains: a first multispecimen approach. Geophysical Journal International, 202(2): 695-712. https://doi.org/10.1093/gji/ggv171

Boiron, T., Aubourg, C., Grignard, P. A., Callot, J.P., 2020. The clay fabric of shales is a strain gauge. Journal of Structural Geology, 104130. https://doi.org/10.1016/j.jsg.2020.104130

Borradaile, G., 1987. Anisotropy of magnetic susceptibility: rock composition versus strain. Tectonophysics, 138(2-4): 327-329. https://doi.org/10.1016/0040-1951(87)90051-5

Borradaile, G.J., 1991. Correlation of strain with anisotropy of magnetic susceptibility (AMS). Pure and applied geophysics, 135(1): 15-29. https://doi.org/10.1007/BF00877006

Borradaile, G.J., Tarling, D.H., 1981. The influence of deformation mechanisms on magnetic fabrics in weakly deformed rocks. Tectonophysics, 77(1-2): 151-168. https://doi.org/10.1016/0040-1951(81)90165-7

Borradaile, G.J., Hamilton, T., 2004. Magnetic fabrics may proxy as neotectonic stress trajectories, Polis rift, Cyprus. Tectonics, 23: TC1001, 1-11. https://doi.org/10.1029/2002TC001434

Borradaile, G.J. Henry, B., 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 42(1-2): 49-93. https://doi.org/10.1016/S0012-8252(96)00044-X

Borradaile, G.J., Jackson, M., 2004. Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Magnetic fabric: Methods and Applications. Geological Society Special Publications 238, (F. Martín-Hernandez, C.M. Lueneburg, C. Aubourg, M. Jackson, Eds). Geological Society of London, London, 299-360. https://doi.org/10.1144/GSL.SP.2004.238.01.18

Borradaile, G.J., Jackson, M., 2010. Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). Journal of Structural Geology, 32(10): 1519-1551. https://doi.org/10.1016/j.jsg.2009.09.006

Bouchez, J.L., 1997. Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Granite: From Segregation of Melt to emplacement fabrics, (J.L. Bouchez, D.H.W. Hutton, W.E. Stephens, Eds). Kluwer, Dordrecht, 95-112. https://doi.org/10.1007/978-94-017-1717-5_6

Bouillin, J.P., Bouchez, J.L., Lespinasse, P., Pecher, A., 1993. Granite emplacement in an extensional setting: an AMS study of the magmatic structure of Mnte Capanne (Elba, Italy). Earth and Planetary Science Letters, 118: 263-279. https://doi.org/10.1016/0012-821X(93)90172-6

Burmeister, K.C., Harrinson, M.J., Marshak, S., Ferre, E.C., Bannister, R.A., Kodama, K.P., 2009. Comparison of Fry strain ellipse and AMS ellipsoid trends to tectonic fabric trends in very low-strain sandstone of the Appalachian fold-thrust belt. Journal of Structural Geology, 31(9): 1028-1038. https://doi.org/10.1016/j.jsg.2009.03.010

Caballero-Miranda, C.I., Alva-Valdivia, L.M., González-Rangel, J.A., Gogitchaishvili, A., Urrutia-Fucugauchi, J., Kontny, A., 2016. Vertical AMS variation within basalt flow profiles from the Xitle volcano (Mexico) as indicator of heterogeneous strain in lava flows. Journal of Volcanology and Geothermal Research, 311: 9-28. https://doi.org/10.1016/j.jvolgeores.2016.01.003

Calvín, P., Villalaín, J.J., Casas-Sainz, A.M., 2018. Anisotropic magnetite growth in remagnetized limestones: Tectonic constraints and implications for basin history. Geology, 46(9): 751-754. https://doi.org/10.1130/G45158.1

Cañón-Tapia, E., 1996. Single-grain versus distribution anisotropy: a simple three-dimensional model. Physics of the Earth and Planetary Interiors, 94(1-2): 149-158. https://doi.org/10.1016/0031-9201(95)03072-7

Cañón-Tapia, E., 2004. Anisotropy of magnetic susceptibility of lava flows and dykes: a historical account. In: Magnetic fabric: Methods and Applications, Geological Society Special Publications 238, (F. Martín-Hernandez, C.M. Lueneburg, C. Aubourg, M. Jackson, Eds). Geological Society of London, London, 205-225. https://doi.org/10.1144/GSL.SP.2004.238.01.14

Casas-Sainz, A. M., Gil-Imaz, A., Simón, J. L., Izquierdo-Llavall, E., Aldega, L., Román-Berdiel, T., Caricchi, C., 2018. Strain indicators and magnetic fabric in intraplate fault zones: Case study of Daroca thrust, Iberian Chain, Spain. Tectonophysics, 730: 29-47. https://doi.org/10.1016/j.tecto.2018.02.013

Černý, J., Melichar, R., Všianský, D., Drahokoupil, J., 2020. Magnetic Anisotropy of Rocks: A New Classification of Inverse Magnetic Fabrics to Help Geological Interpretations. Journal of Geophysical Research: Solid Earth, 125(11): e2020JB020426. https://doi.org/10.1029/2020JB020426

Cifelli, F., Mattei, M., Hirt, A.M., Günther, A., 2004. The origin of tectonic fabrics in "undeformed" clays: the early stages of deformation in extensional sedimentary basins. Geophys. Res. Lett., 31: L09604. https://doi.org/10.1029/2004GL019609

Cifelli, F., Mattei, M., Chadima, M., Hirt, A. M., Hansen, A., 2005. The origin of tectonic lineation in extensional basins: combined neutron texture and magnetic analyses on "undeformed" clays. Earth and Planetary Science Letters, 235(1-2): 62-78. https://doi.org/10.1016/j.epsl.2005.02.042

Debacker, T.N., Robion, P., Sintubin, M., 2004. The anisotropy of magnetic susceptibility (AMS) in low-grade, cleaved pelitic rocks: influence of cleavage/bedding angle and type and relative orientation of magnetic carriers. In: Magnetic fabric: Methods and Applications, Geological Society Special Publications 238, (F. Martín-Hernandez, C.M. Lueneburg, C. Aubourg, M. Jackson, Eds). Geological Society of London, London, 77-107. https://doi.org/10.1144/GSL.SP.2004.238.01.08

de Wall, H., Worm, H.U., 1993. Field dependence of magnetic anisotropy in pyrrhotite: effects of texture and grain shape. Physics of the Earth and Planetary Interiors, 76(1-2): 137-149. https://doi.org/10.1016/0031-9201(93)90063-F

Díaz-Azpiroz, M., Barcos, L., Balanyá, J.C., Fernández, C., Expósito, I., Czeck, D.M., 2014. Applying a general triclinic transpression model to highly partitioned brittle-ductile shear zones: A case study from the Torcal de Antequera massif, external Betics, southern Spain. Journal of Structural Geology, 68: 316-336. https://doi.org/10.1016/j.jsg.2014.05.010

Elhanati, D., Issachar, R., Levi, T., Weinberger, R., 2021. A practical approach for identification of magnetic fabric carriers in rocks. Journal of Geophysical Research: Solid Earth, 126(5): e2020JB021105. https://doi.org/10.1029/2020JB021105

Fanjat, G., Camps, P., Shcherbakov, V., Barou, F., Sougrati, M. T., Perrin, M., 2012. Magnetic interactions at the origin of abnormal magnetic fabrics in lava flows: a case study from Kerguelen flood basalts. Geophysical Journal International, 189(2): 815-832. https://doi.org/10.1111/j.1365-246X.2012.05421.x

Felletti, F., Dall'Olio, E., Muttoni, G., 2016. Determining flow directions in turbidites: an integrated sedimentological and magnetic fabric study of the Miocene Marnoso Arenacea Formation (northern Apennines, Italy). Sedimentary Geology, 335: 197-215. https://doi.org/10.1016/j.sedgeo.2016.02.009

Ferré, E.C., Gébelin, A., Till, J.L., Sassier, C., Burmeister, K.C., 2014. Deformation and magnetic fabrics in ductile shear zones: a review. Tectonophysics, 629: 179-188. https://doi.org/10.1016/j.tecto.2014.04.008

Flinn, D., 1958. On tests of significance of preferred orientation in three-dimensional fabric diagrams. The Journal of Geology, 66(5): 526-539. https://doi.org/10.1086/626533

Fodor, L.I., Márton, E., Vrabec, M., Koroknai, B., Trajanova, M., Vrabec, M., 2020. Relationship between magnetic fabrics and deformation of the Miocene Pohorje intrusions and surrounding sediments (Eastern Alps). International Journal of Earth Sciences, 109(4): 1377-1401. https://doi.org/10.1007/s00531-020-01846-4

Fossen, H., Tikoff, B., 1998. Extended models of transpression and transtension, and application to tectonic settings. In: Continental Transpressional and Transtensional Tectonics, Geological Society Special Publications 135, (R.E. Holdsworth, R.A. Strachan, J.E. Dewey, Eds). Geological Society, London, 15-33. https://doi.org/10.1144/GSL.SP.1998.135.01.02

Gaillot, P., de Saint-Blanquat, M., Bouchez, J.L., 2006. Effects of magnetic interactions in anisotropy of magnetic susceptibility: Models, experiments and implications for igneous rock fabrics quantification. Tectonophysics, 418(1-2): 3-19. https://doi.org/10.1016/j.tecto.2005.12.010

García-Lasanta, C., Oliva-Urcia, B., Román-Berdiel, T., Casas, A.M. Pérez-Lorente, F., 2013. Development of magnetic fabrics in sedimentary rocks: insights from early compactional structures (ECS). Geophysical Journal International, 194 (1): 182-199. https://doi.org/10.1093/gji/ggt098

García-Lasanta, C., Oliva-Urcia, B., Román-Berdiel, T., Casas, A.M., Hirt, A.M., 2014. Understanding the Mesozoic kinematic evolution in the Cameros basin (Iberian Range, NE Spain) from magnetic subfabrics and mesostructures. Journal of Structural Geology, 66: 84-101. https://doi.org/10.1016/j.jsg.2014.05.013

García-Lasanta, C., Oliva-Urcia, B., Román-Berdiel, T., Casas, A.M., Gil-Peña, I., Sánchez-Moya, Y., Sopeña, A., Hirt, A.M. Mattei, M., 2015. Evidence for the Permo-Triassic transtensional rifting in the Iberian Range (NE Spain) according to magnetic fabrics results. Tectonophysics 651-652: 216-231. https://doi.org/10.1016/j.tecto.2015.03.023

García-Lasanta, C., Izquierdo-Llavall, E., Román-Berdiel, T., 2017a. Magnetic fabric analysis in analogue models of clays. Geogaceta, 61: 103-106.

García-Lasanta, C., Román-Berdiel, T., Izquierdo-Llavall, E., Casas-Sainz A., 2017b. Magnetic fabric analysis in analogue models of clays. European Geosciences Union General Assembly. Geophysical Research Abstracts, 19: 18643-2.

García-Lasanta, C., Oliva-Urcia, B., Casas-Sainz, A. M., Román-Berdiel, T., Izquierdo-Llavall, E., Soto, R., Villalaín, J.J., 2018. Inversion tectonics and magnetic fabrics in Mesozoic basins of the Western Tethys: A review. Tectonophysics, 745: 1-23. https://doi.org/10.1016/j.tecto.2018.08.005

Goldstein, A.G., Brown, L.L., 1988. Magnetic susceptibility anisotropy of mylonites from the Brevard Zone, North Carolina, USA. Physics of the earth and Planetary Interiors, 51(4): 290-300. https://doi.org/10.1016/0031-9201(88)90070-2

Gonçalves, A., Sant'Ovaia, H., Noronha, F., 2020. Geochemical Signature and Magnetic Fabric of Capinha Massif (Fundão, Central Portugal): Genesis, Emplacement and Relation with W-Sn Mineralizations. Minerals, 10(6): 557. https://doi.org/10.3390/min10060557

Gracia-Puzo, F., Aubourg, C., Casas-Sainz, A., 2021. A fast way to estimate the clay fabric from shale fragments. Key example from a strained thrust footwall (Pyrenees). Journal of Structural Geology, 104443. https://doi.org/10.1016/j.jsg.2021.104443

Graham, J.W., 1966. Significance of magnetic anisotropy in Appalachian sedimentary rocks. In: The Earth Beneath the Continents, Geophysical Monographs 10, (J.S. Steinhart, T.J. Smith, Eds). American Geophysical Union, 627-648. https://doi.org/10.1029/GM010p0627

Hansen, A., Chadima, M., Cifelli, F., Brokmeier, H.G., Siemes, H., 2004. Neutron pole figures compared with magnetic preferred orientations of different rock types. Physica B: Condensed Matter, 350(1): 120-122. https://doi.org/10.1016/j.physb.2004.04.008

Heinrich, F.C., Schmidt, V., Schramm, M., Mertineit, M., 2019. Anisotropy of magnetic susceptibility in salt rocks from the German Zechstein Basin, Sondershausen mine. Geophysical Journal International, 219(1): 690-712. https://doi.org/10.1093/gji/ggz326

Housen, B.A., van der Pluijm, B.A., 1990. Chlorite control of correlations between strain and anisotropy of magnetic susceptibility. Physics of the Earth and Planetary Interiors, 61. https://doi.org/10.1016/0031-9201(90)90114-D

Housen, B.A., Richter, C., van der Pluijm, B.A., 1993. Composite magnetic anisotropy fabrics: experiments, numerical models and implications for the quantification of rock fabrics. Tectonophysics, 220(1-4): 1-12. https://doi.org/10.1016/0040-1951(93)90219-A

Housen, B.A., van Der Pluijm, B.A., Essene, E.J., 1995. Plastic behavior of magnetite and high strains obtained from magnetic fabrics in the Parry Sound shear zone, Ontario Grenville Province. Journal of Structural Geology, 17(2): 265-278. https://doi.org/10.1016/0191-8141(94)E0045-Z

Hrouda, F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surveys, 5: 37-82. https://doi.org/10.1007/BF01450244

Hrouda, F., Janák, F., 1971. A study of the hematite fabric of some red sediments on the basis of their magnetic susceptibility anisotropy. Sedimentary Geology, 6(3): 187-199. https://doi.org/10.1016/0037-0738(71)90035-2

Hrouda, F., Chlupáčová, M., Schulmann, K., Šmíd, J., Závada, P., 2005. On the effect of lava viscosity on the magnetic fabric intensity in alkaline volcanic rocks. Studia Geophysica et Geodaetica, 49(2): 191-212. https://doi.org/10.1007/s11200-005-0005-5

Janák, F., 1972. Magnetic susceptibility anisotropy of various rock types and its significance for geophysics and geology. Geophysical Prospecting, 20(2): 375-384. https://doi.org/10.1111/j.1365-2478.1972.tb00640.x

Janák, F., Kropáček, V., 1973. A brief outline of the magnetic susceptibility anisotropy of various rock types. Studia Geophysica et Geodaetica, 17(2): 123-130. https://doi.org/10.1007/BF01613682

Jones, R.R., Tanner, P.G., 1995. Strain partitioning in transpression zones. Journal of Structural Geology, 17(6): 793-802. https://doi.org/10.1016/0191-8141(94)00102-6

Kelso, P.R., Tikoff, B., Jackson, M., Sun, W., 2002. A new method for the separation of paramagnetic and ferromagnetic susceptibility anisotropy using low field and high field methods. Geophysical Journal International, 151(2): 345-359. https://doi.org/10.1046/j.1365-246X.2002.01732.x

Khan, M.A., 1962. The anisotropy of magnetic susceptibility of some igneous and metamorphic rocks. Journal of Geophysical Research, 67(7): 2873-2885. https://doi.org/10.1029/JZ067i007p02873

King, R.F., 1966. The magnetic fabric of some Irish granites. Geological Journal, 5(1): 43-66. https://doi.org/10.1002/gj.3350050106

Kissel, C., Barrier, E., Laj, C., Lee, T.Q., 1986. Magnetic fabric in "undeformed" marine clays from compressional zones. Tectonics, 5: 769-781. https://doi.org/10.1029/TC005i005p00769

Kligfield, R., Lowrie, W., Dalziel, I.W.D., 1977. Magnetic susceptibility as a strain indicator in the Sudbury Basin, Ontario. Tectonophysics, 40(3-4): 287-308. https://doi.org/10.1016/0040-1951(77)90070-1

Kodama, K.P., Sun, W.W., 1990. SEM and magnetic fabric study of a compacting sediment. Geophysical Research Letters, 17(6): 795-798. https://doi.org/10.1029/GL017i006p00795

Kontny, A., Engelmann, R., Grimmer, J.C., Greiling, R.O., Hirt, A., 2012. Magnetic fabric development in a highly anisotropic magnetite-bearing ductile shear zone (Seve Nappe Complex, Scandinavian Caledonides). International Journal of Earth Sciences, 101(3): 671-692. https://doi.org/10.1007/s00531-011-0713-8

Kuehn, R., Hirt, A. M., Biedermann, A. R., Leiss, B., 2019. Quantitative comparison of microfabric and magnetic fabric in black shales from the Appalachian plateau (western Pennsylvania, USA). Tectonophysics, 765: 161-171. https://doi.org/10.1016/j.tecto.2019.04.013

Kusbach, V.K., Machek, M., Roxerová, Z., Racek, M., Silva, P.F., 2019. Localization effect on AMS fabric revealed by microstructural evidence across small-scale shear zone in marble. Scientific reports, 9(1): 1-14. https://doi.org/10.1038/s41598-019-53794-y

Larrasoaña, J.C., Pueyo, E.L. Parés, J.M., 2004. An integrated AMS, structural, palaeo- and rock-magnetic study of Eocene marine marls from Jaca-Pamplona basin (Pyrenees, N Spain): new insights into the timing of magnetic fabric acquisition in weakly deformed mudrocks. In: Magnetic fabric: Methods and Applications, Geological Society Special Publications 238, (F. Martín-Hernandez, C.M. Lueneburg, C. Aubourg, M. Jackson, Eds). Geological Society of London, London, 127-143. https://doi.org/10.1144/GSL.SP.2004.238.01.10

Larrasoaña, J.C., Gómez-Paccard, M., Giralt, S. Roberts, A.P., 2011. Rapid locking of tectonic magnetic fabrics in weakly deformed mudrock. Tectonophysics, 507: 16-25. https://doi.org/10.1016/j.tecto.2011.05.003

Lee, T.Q., Kissel, C., Laj, C., Horng, C.S., Lue, Y.T., 1990. Magnetic fabric analysis of the Plio-Pleistocene sedimentary formations of the Coastal Range of Taiwan. Earth and Planetary Science Letters, 98(1): 23-32. https://doi.org/10.1016/0012-821X(90)90085-C

Lüneburg, C.M., Lampert, S.A., Hermann, I., Lebit, D., Hirt, A.M., Casey, M. Lowrie, W., 1999. Magnetic anisotropy, rock fabrics and finite strain in deformed sediments of SW Sardinia (Italy). Tectonophysics, 307: 51-74. https://doi.org/10.1016/S0040-1951(99)00118-3

Mamtani, M.A., Reznik, B., Kontny, A., 2020. Intracrystalline deformation and nanotectonic processes in magnetite from a naturally deformed rock. Journal of Structural Geology, 135: 104045. https://doi.org/10.1016/j.jsg.2020.104045

Marcén, M., Román-Berdiel, T., Casas, A., Calvín-Ballester, P., Oliva-Urcia, B., García-Lasanta, C., 2015. Kinematics of long lived faults in intraplate settings: case study of the Río Grío Fault (Iberian Range). European Geosciences Union General Assembly. Geophysical Research Abstracts: 5165.

Marcén, M., Casas-Sainz, A.M., Román-Berdiel, T., Oliva-Urcia, B., Soto, R., Aldega, L., 2018. Kinematics and strain distribution in an orogen-scale shear zone: Insights from structural analyses and magnetic fabrics in the Gavarnie thrust, Pyrenees. Journal of Structural Geology, 117: 105-123. https://doi.org/10.1016/j.jsg.2018.09.008

Marcén, M., Román-Berdiel, T., Casas-Sainz, A. M., Soto, R., Oliva-Urcia, B., Castro, J., 2019. Strain variations in a seismogenic normal fault (Baza Sub-basin, Betic Chain): Insights from magnetic fabrics (AMS). Tectonophysics, 765: 64-82. https://doi.org/10.1016/j.tecto.2019.05.014

Martín-Hernández, F., Hirt, A.M., 2004. A method for the separation of paramagnetic, ferrimagnetic and haematite magnetic subfabrics using high-field torque magnetometry. Geophysical Journal International, 157 (1): 117-127. https://doi.org/10.1111/j.1365-246X.2004.02225.x

Martín-Hernández, F., Ferré, E.C., 2007. Separation of paramagnetic and ferrimagnetic anisotropies: A review. Journal of Geophysical Research: Solid Earth, 112(B3). https://doi.org/10.1029/2006JB004340

Martín-Hernandez, F., Guerrero-Suárez, S., 2012. Magnetic anisotropy of hematite natural crystals: high field experiments. International Journal of Earth Sciences, 101(3): 637-647. https://doi.org/10.1007/s00531-011-0665-z

Mattei, M., Sagnotti, L., Faccenna, C., Funiciello, R., 1997. Magnetic fabric of weakly deformed clay-rich sediments in the Italian peninsula: relationship with compressional and extensional tectonics. Tectonophysics, 271: 107-122. https://doi.org/10.1016/S0040-1951(96)00244-2

Mattei, M., Speranza, F., Argentieri, A., Rossetti, F., Sagnotti, L., Funiciello, R., 1999. Extensional tectonics in the Amantea basin (Calabria, Italy): a comparison between structural and magnetic anisotropy data. Tectonophysics, 307(1-2): 33-49. https://doi.org/10.1016/S0040-1951(99)00117-1

Mattsson, T., Petri, B., Almqvist, B., McCarthy, W., Burchardt, S., Palma, J. O., Galland, O., 2021. Decrypting magnetic fabrics (AMS, AARM, AIRM) through the analysis of mineral shape fabrics and distribution anisotropy. Journal of Geophysical Research: Solid Earth, e2021JB021895. https://doi.org/10.1029/2021JB021895

Mertanen, S., Karell, F., 2012. Palaeomagnetic and AMS studies on Satulinmaki and Koijarvi fault and shear zones. Geological Survey of Finland Special Paper, 52: 195-226.

Merz, L., Almqvist, B.S., Grimmer, J.C., Kontny, A., 2019. Magnetic fabric development in the Lower Seve thrust from the COSC-1 drilling, Swedish Caledonides. Tectonophysics, 751: 212-228. https://doi.org/10.1016/j.tecto.2018.12.018

Mochales, T., Pueyo, E. L., Casas, A.M., Barnolas, A., Oliva-Urcia, B., 2010. Anisotropic magnetic susceptibility record of the kinematics of the Boltaña Anticline (Southern Pyrenees). Geological Journal, 45(5-6): 562-581. https://doi.org/10.1002/gj.1207

Mondal, T.K., Mamtani, M.A., 2014. Fabric analysis in rocks of the Gadag region (southern India)-implications for time relationship between regional deformation and gold mineralization. Tectonophysics, 629: 238-249. https://doi.org/10.1016/j.tecto.2013.09.021

Morrish, A.H., 1994. Canted antiferromagnetism: hematite. World Scientific Publishing C. Pte Ltd, Singapore. https://doi.org/10.1142/2518

Nagaraju, E., Parashuramulu, V., 2019. AMS studies on a 450 km long 2216 Ma dyke from Dharwar craton, India: implications to magma flow. Geoscience Frontiers, 10(5): 1931-1939. https://doi.org/10.1016/j.gsf.2018.12.003

Nédélec, A. Bouchez, J.L., 2015. Granites: petrology, structure, geological setting and metallogeny. Oxford University Press, 335 p. https://doi.org/10.1093/acprof:oso/9780198705611.001.0001

Nye, J.F., 1951. Physical properties of crystals. Clarendon Press. Oxford.

Oliva-Urcia, B., Larrasoaña, J.C., Pueyo, E.L., Gil, A., Mata, P., Parés, J.M., Schleicher, A.M., Pueyo, O., 2009. Disentangling magnetic subfabrics and their link to deformation processes in cleaved sedimentary rocks from the Internal Sierras (west central Pyrenees, Spain). Journal of Structural Geology, 31: 163-176. https://doi.org/10.1016/j.jsg.2008.11.002

Oliva-Urcia, B., Casas, A.M., Soto, R., Villalaín, J.J. Kodama, K., 2010. A transtensional basin model for the Organyà basin (central southern Pyrenees) based on magnetic fabric and brittle structures. Geophysical Journal International, 184 (1): 111-130. https://doi.org/10.1111/j.1365-246X.2010.04865.x

Oliva-Urcia, B., Román-Berdiel, T., Casas, A.M., Bogalo, M.F., Osácar, M.C. García-Lasanta, C., 2013. Transition from extensional to compressional magnetic fabrics in the cretaceous Cabuérniga basin (North Spain). Journal of Structural Geology, 46: 220-234. https://doi.org/10.1016/j.jsg.2012.09.001

Oliva-Urcia, B., Casas, A.M., Moussaid, B., Villalaín, J.J., El Ouardi, H., Soto, R., Torres-López, S., Román-Berdiel, T., 2016. Tectonic fabrics vs. mineralogical artifacts in AMS analysis: a case study of the Western Morocco extensional Triassic basins. Journal of Geodynamics, 94-95: 13-33. https://doi.org/10.1016/j.jog.2016.01.004

Ort, M.H., Porreca, M., Geissman, J.W., 2015. The use of palaeomagnetism and rock magnetism to understand volcanic processes: introduction. In: The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes, Geological Society Special Publications 396, (M.H. Ort, M. Porreca, J.W. Geissman, Eds). Geological Society of London, London, 1-11. https://doi.org/10.1144/SP396.17

Parés, J.M., 2004. How deformed are weakly deformed mudrocks? Insights from magnetic anisotropy. In: Magnetic fabric: Methods and Applications, Geological Society Special Publications 238, (F. Martín-Hernandez, C.M. Lueneburg, C. Aubourg, M. Jackson, Eds). Geological Society of London, London, 191-203. https://doi.org/10.1144/GSL.SP.2004.238.01.13

Parés, J.M., 2015. Sixty years of anisotropy of magnetic susceptibility in deformed sedimentary rock. Frontiers in Earth Science, 3(4): 1-13. https://doi.org/10.3389/feart.2015.00004

Parés, J.M., Anastasio, D., 2018. The extent of penetrative Pyrenean deformation in the Ebro foreland Basin: Magnetic fabric data from the eastern sector. Geologica Acta, 16(4): 375-390.

Parés, J.M., van der Pluijm, B.A., 2002a. Phyllosilicate fabric characterization by low-temperature anisotropy of magnetic susceptibility (LT-AMS). Geophysical Research Letters, 29(24): 68-1. https://doi.org/10.1029/2002GL015459

Parés, J.M., van Der Pluijm, B.A., 2002b. Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics, 350(4): 283-298. https://doi.org/10.1016/S0040-1951(02)00119-1

Parés, J.M., van der Pluijm, B.A., 2014. Low-temperature AMS and the quantification of subfabrics in deformed rocks. Tectonophysics, 629: 55-62. https://doi.org/10.1016/j.tecto.2014.03.005

Parés, J.M., van der Pluijm, B.A., Dinarès-Turell, J., 1999. Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain). Tectonophysics, 307: 1-14. https://doi.org/10.1016/S0040-1951(99)00115-8

Pocoví, J.A., Anchuela, Ó.P., Pueyo, E.L., Casas-Sainz, A.M., Berdiel, M.R., Imaz, A. G., Villalaín, J.J., 2014. Magnetic fabrics in the Western Central-Pyrenees: an overview. Tectonophysics, 629: 303-318. https://doi.org/10.1016/j.tecto.2014.03.027

Porquet, M., Pueyo, E.L., Román-Berdiel, T., Olivier, P., Longares, L.A., Cuevas, J., Ramajo, J., the Geokin3DPyr working group by alphabetical order, Antolín, B., Aranguren, A., Auréjac, J.B., Bouchez, J.-L., M. Casas, A.M., Denèle, Y., Gleizes, G., Hilario, A., Izquierdo-Llavall, E., Leblanc, D., Oliva-Urcia, B., Santana,V., Tubía, J.M., Vegas, N., 2017. Anisotropy of magnetic susceptibility of the Pyrenean granites. Journal of Maps, 13(2): 438-448. https://doi.org/10.1080/17445647.2017.1302364

Prior, D. J., Boyle, A.P., Brenker, F., Cheadle, M.C., Day, A., López, G., Peruzzi, L., Potts, G., Reddy, S., Spiess, R., Timms, N.E., Trimby, P., Wheeler, J., Zetterstrom, L., 1999. The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. American Mineralogist, 84: 1741-1759. https://doi.org/10.2138/am-1999-11-1204

Pueyo-Anchuela, Ó., Gil Imaz, A., Pocoví Juan, A., 2010. Tectonic imprint in magnetic fabrics in foreland basins: a case study from the Ebro Basin, N Spain. Tectonophysics, 492(1-4): 150-163. https://doi.org/10.1016/j.tecto.2010.06.016

Pueyo-Anchuela, O., Pueyo, E.L., Juan, A.P., Imaz, A.G., 2012. Vertical axis rotations in fold and thrust belts: comparison of AMS and paleomagnetic data in the Western External Sierras (Southern Pyrenees). Tectonophysics, 532: 119-133. https://doi.org/10.1016/j.tecto.2012.01.023

Ramsay, J.G., 1967. Folding and fracturing of rocks. Mc Graw Hill Book Company, 568 pp.

Ramsay, J.G., Graham, R.H., 1970. Strain variation in shear belts. Canadian Journal of Earth Sciences, 7(3): 786-813. https://doi.org/10.1139/e70-078

Ramsay, J.G., Huber, M.I., 1983. The techniques of modern structural geology: strain analysis. Academic press.

Ramsay, J.G., Huber, M.I., Lisle, R.J., 1983. The techniques of modern structural geology: Folds and fractures (Vol. 2). Academic press.

Rees, A.I., 1965. The use of anisotropy of magnetic susceptibility in the estimation of sedimentary fabric 1. Sedimentology, 4(4): 257-271. https://doi.org/10.1111/j.1365-3091.1965.tb01550.x

Richter, C., Ratschbacher, L., Frisch, W., 1993. Magnetic fabrics, crystallographic preferred orientation, and strain of progressively metamorphosed pelites in the Helvetic Zone of the Central Alps (Qartenschifer Formation). Journal of Geophysical Research, 98: 9557-9570. https://doi.org/10.1029/93JB00554

Roberts, A.P., 2015. Magnetic mineral diagenesis. Earth-Science Reviews, 151: 1-47. https://doi.org/10.1016/j.earscirev.2015.09.010

Robion, P., David, C., Dautriat, J., Colombier, J.C., Zinsmeister, L., Collin, P.Y., 2014. Pore fabric geometry inferred from magnetic and acoustic anisotropies in rocks with various mineralogy, permeability and porosity. Tectonophysics, 629: 109-122. https://doi.org/10.1016/j.tecto.2014.03.029

Rochette, P., 1988. Inverse magnetic fabric in carbonate-bearing rocks. Earth and Planetary Science Letters, 90(2): 229-237. https://doi.org/10.1016/0012-821X(88)90103-3

Román-Berdiel, T., Pueyo-Morer, E.L., Casas-Sainz, A.M., 1995. Granite emplacement during contemporary shortening and normal faulting: structural and magmatic study of the Veiga Massif (NW Sapin). Journal of Structural Geology, 17: 1689-1706. https://doi.org/10.1016/0191-8141(95)00062-I

Román-Berdiel, T., Casas-Sainz, A.M., Oliva-Urcia, B., Calvín, P., Villalaín, J.J., 2019. On the influence of magnetic mineralogy in the tectonic interpretation of anisotropy of magnetic susceptibility in cataclastic fault zones. Geophysical Journal International, 216(2): 1043-1061. https://doi.org/10.1093/gji/ggy481

Sagnotti, L., 2007. Iron sulfides. In: Encyclopedia of geomagnetism and paleomagnetism. Springer.

Sagnotti, L., Faccenna, C., Funiciello, R. Mattei, M., 1994. Magnetic fabric and structural setting of Plio-Pleistocene clayey units in an extensional regime: the Tyrrhenian margin of Central Italy. Journal of Structural Geology, 16: 1243-1257. https://doi.org/10.1016/0191-8141(94)90067-1

Sagnotti, L., Speranza, F., Winkler, A., Mattei, M., Funiciello, R., 1998. Magnetic fabric of clay sediments from the external northern Apennines (Italy). Physics of the Earth and Planetary Interiors, 105(1-2): 73-93. https://doi.org/10.1016/S0031-9201(97)00071-X

Sagnotti, L., Winkler, A., Montone, P., Di Bella, L., Florindo, F., Mariucci, M. T., Marra, F., Alfonsi, L., Frepoli, A., 1999. Magnetic anisotropy of Plio-Pleistocene sediments from the Adriatic margin of the northern Apennines (Italy): implications for the time-space evolution of the stress field. Tectonophysics, 311: 139-153. https://doi.org/10.1016/S0040-1951(99)00159-6

Santolaria, P., Casas, A. M., Soto, R., 2015. Anisotropy of magnetic susceptibility as a proxy to assess internal deformation in diapirs: case study of the Naval salt wall (Southern Pyrenees). Geophysical Journal International, 202(2): 1207-1222. https://doi.org/10.1093/gji/ggv231

Schöfisch, T., Koyi, H., Almqvist, B., 2021. Influence of décollement friction on anisotropy of magnetic susceptibility in a fold-and-thrust belt model. Journal of Structural Geology, 144: 104274. https://doi.org/10.1016/j.jsg.2020.104274

Schöpa, A., Floess, D., de Saint Blanquat, M., Annen, C., Launeau, P., 2015. The relation between magnetite and silicate fabric in granitoids of the Adamello Batholith. Tectonophysics, 642: 1-15. https://doi.org/10.1016/j.tecto.2014.11.022

Silva, P.F., Marques, F.O., Henry, B., Madureira, P., Hirt, A.M., Font, E., Lourenço, N., 2010. Thick dyke emplacement and internal flow: A structural and magnetic fabric study of the deep-seated dolerite dyke of Foum Zguid (southern Morocco). Journal of Geophysical Research: Solid Earth, 115(B12). https://doi.org/10.1029/2010JB007638

Soto, R., Casas-Sainz, A.M., Villalaín, J.J., Oliva-Urcia, B., 2007. Mesozoic extension in the Basque-Cantabrian basin (N Spain). Contributions from AMS and brittle mesostructures. Tectonophysics, 445: 373-394. https://doi.org/10.1016/j.tecto.2007.09.007

Soto, R., Casas-Sainz, A.M., Villalaín, J.J., Gil-Imaz, A., Fernández-González, G., Del Río, P., Calvo, M., Mochales, T., 2008. Characterizing the Mesozoic extension direction in the northern Iberian plate margin by anisotropy of magnetic susceptibility (AMS). Journal of the Geological Society, 165: 1007-1018. https://doi.org/10.1144/0016-76492007-163

Soto, R., Larrasoaña, J.C., Arlegui, L.E., Beamud, E., Oliva-Urcia, B., Simón, J.L., 2009. Reliability of magnetic fabric of weakly deformed mudrocks as a palaeostress indicator in compressive settings. Journal of Structural Geology, 31(5): 512-522. https://doi.org/10.1016/j.jsg.2009.03.006

Soto, R., Kullberg, J.C., Oliva-Urcia, B., Casas-Sainz, A.M., Villalaín, J.J., 2012. Switch of Mesozoic extensional tectonic style in the Lusitanian basin (Portugal): Insights from magnetic fabrics. Tectonophysics, 536-537: 122-135. https://doi.org/10.1016/j.tecto.2012.03.010

Soto, R., Beamud, E., Oliva-Urcia, B., Roca, E., Rubinat, M., Villalaín, J.J., 2014. Applicability of magnetic fabrics in rocks associated with the emplacement of salt structures (the Bicorb-Quesa and Navarrés salt walls, Prebetics, SE Spain). Tectonophysics, 629: 319-334. https://doi.org/10.1016/j.tecto.2014.07.004

Soto, R., Larrasoaña, J.C., Beamud, E., Garcés, M., 2016. Early-Middle Miocene subtle compressional deformation in the Ebro foreland basin (northern Spain); insights from magnetic fabrics. Comptes Rendus Geoscience, 348(3-4): 213-223. https://doi.org/10.1016/j.crte.2015.10.009

Soto, R., Beamud, E., Roca, E., Carola, E., Almar, Y., 2017. Distinguishing the effect of diapir growth on magnetic fabrics of syn-diapiric overburden rocks: Basque-Cantabrian basin, Northern Spain. Terra Nova, 29(3): 191-201. https://doi.org/10.1111/ter.12262

Soto, R., Casas-Sainz, A., Oliva-Urcia, B., García-Lasanta, C., Izquierdo-Llavall, E., Moussaid, B., Kullberg, J.C., Román-Berdiel, T., Sánchez-Moya, Y., Sopeña, A., Torres López, S., Villalaín, J.J., El-Ouardi, H., Gil-Peña, I., Hirt, A., Scholger, R., 2019. Triassic stretching directions in Iberia and North Africa inferred from magnetic fabrics. Terra Nova, 31: 465-478. https://doi.org/10.1111/ter.12416

Staudigel, H., Gee, J., Tauxe, L., Varga, R.J., 1992. Shallow intrusive directions of sheeted dikes in the Troodos ophiolite: anisotropy of magnetic susceptibility and structural data. Geology, 20: 841-844. https://doi.org/10.1130/0091-7613(1992)020<0841:SIDOSD>2.3.CO;2

Tarling, D.H., Hrouda, F., 1993. The magnetic anisotropy of rocks. Chapman and Hall, 212 p.

Uyeda, S., Fuller, M.D., Belshe, J. C., Girdler, R.W., 1963. Anisotropy of magnetic susceptibility of rocks and minerals. Journal of Geophysical Research, 68(1): 279-291. https://doi.org/10.1029/JZ068i001p00279

Van der Pluijm, B.A., Ho, N.C., Peacor, D., 1994. High-resolution X-ray texture goniometry. Journal of Structural Geology, 16(7): 1029-1032. https://doi.org/10.1016/0191-8141(94)90084-1

Wing-Fatt, L., Stacey, F. D., 1966. Magnetic anisotropy of laboratory materials in which magma flow is simulated. Pure and Applied Geophysics, 64(1): 78-80. https://doi.org/10.1007/BF00875533

Zhu, K.Y., Li, M.Y., Shentu, L.F., Shen, Z.Y., Yu, Y.H., 2017. Evaluation of a small-diameter sampling method in magnetic susceptibility, AMS and X-ray CT studies and its applications to mafic microgranular enclaves (MMEs) in granite. Journal of Volcanology and Geothermal Research, 341: 208-227. https://doi.org/10.1016/j.jvolgeores.2017.06.002

Descargas

Publicado

2022-06-28 — Actualizado el 2023-06-19

Versiones

Cómo citar

Soto, R., Casas-Sainz, A. M., Oliva-Urcia, B., & Román-Berdiel, T. (2023). Guía rápida para el estudio de rocas deformadas a partir del análisis de la Anisotropía de la Susceptiblidad Magnética (ASM). Revista De La Sociedad Geológica De España, 35(1), 56–70. https://doi.org/10.55407/rsge.94884 (Original work published 11 de octubre de 2022)

Número

Sección

Artículos

Artículos más leídos del mismo autor/a