Nueva aproximación a la comprensión del régimen sismotectónico del nido sísmico de Bucaramanga

Autores/as

  • Jhon Leandro Pérez Profesional
  • Elkin de Jesús
  • Jhonattan
  • César
  • Nathalie

DOI:

https://doi.org/10.55407/rsge.109103

Palabras clave:

Nido Sísmico de Bucaramanga, sismotectónica,, mecanismos focales, campo de esfuerzos, inestabilidad térmica

Resumen

Esta investigación se enfoca en comprender el Nido Sísmico de Bucaramanga (NSB), desde una perspectiva física. Por esta razón, no enfatiza en relacionar su génesis, con la interacción de placas (perspectiva geodinámica). En este sentido, se propone que la actividad del NSB podría estar asociada con el fracturamiento de rocas ultramáficas (parcialmente fundidas) cuyo mecanismo físico de ruptura es por inestabilidad térmica. De acuerdo con la inversión de los mecanismos focales analizados, el campo de esfuerzos total del NSB es compresivo (R = 0.91 y R’ = 2.91) y susceptible de cambiar a uno transcurrente (permutación entre σ2 y σ3), donde la deformación del medio responde a una falla de rumbo con componente extensional, consistente con el valor b estimado ~1.0 y que se relaciona con este tipo de contexto. Por otra parte, el NSB experimenta una alta deformación (del orden de 10-5 año-1) y su máximo valor en dirección vertical (z;ε3 = 2.6x10-5/año) tiene una velocidad relativa de deformación de 52 cm/año, aproximándose a valores de velocidad de plumas magmáticas en ascenso (~200 km de profundidad) por lo que se sugiere no descartar que la actividad sísmica de esta fuente pudiera estar relacionada con alguna anomalía geofísica que se desprenda de procesos convectivos.

Citas

Aki, K., 1965. Maximum likelihood estimates of b in the formula log N = a - bM and its confidence limits, Bull. Earthq. Res. Inst., 43, 237-239.

Ali, S.M., Abdelrahman, K., Al-Otaibi, N., 2021. Tectonic stress regime and stress patterns from the inversion of earthquake focal mechanisms in NW Himalaya and surrounding regions. Journal of King Saud University-Science, 33(2), 101351. https://doi.org/10.1016/j.jksus.2021.101351

Álvarez-Gómez, J.A., 2014. FMC: a one-liner Python program to manage, classify and plot focal mechanisms. Geophysical Research Abstracts, Vol. 16.

Arnould, M., Coltice, N., Flament, N., Mallard, C., 2020. Plate tectonics and mantle controls on plume dynamics. Earth and Planetary Science Letters, 547, 116439. https://doi.org/10.1016/j.epsl.2020.116439

Barrett, S.A., 2015. Seismological Constraints on the Mechanics of Intermediate-depth Earthquakes in the Bucaramanga Nest (Doctoral dissertation, Stanford University).

Ben Ismaïl, W., Mainprice, D., 1998. An olivine fabric database: An overview of upper mantle fabrics and seismic anisotropy. Tectonophysics, 296(1-2), 145-157. https://doi.org/10.1016/S0040-1951(98)00141-3

Bürgmann, R., Dresen, G., 2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci., 36(1), 531-567. https://doi.org/10.1146/annurev.earth.36.031207.124326

Chang, Y., Warren, L.M., Prieto, G.A., 2017. Precise locations for intermediate-depth earthquakes in the Cauca cluster, Colombia. Bulletin of the Seismological Society of America, 107(6):2649–2663. https://doi.org/10.1785/0120170127

Chang, Y., Warren, L., Zhu, L., Prieto, G.A., 2019. Earthquake focal mechanisms and stress field for the intermediate-depth Cauca cluster, Colombia. Journal of Geophysical Research: Solid Earth, 124(1):822-836. https://doi.org/10.1029/2018JB016804

Chiarabba, C., De Gori, P., Faccenna, C., Speranza, F., Seccia, D., Dionicio, V., Prieto, G.A., 2015. Subduction system and flat slab beneath the Eastern Cordillera of Colombia. Geochemistry, Geophysics, Geosystems, 17(1), 16-27. https://doi.org/10.1002/2015GC006048

Cornthwaite, J., Bezada, M.J., Miao, W., Schmitz, M., Prieto, G.A., Dionicio, V., Levander, A., 2021. Caribbean slab segmentation beneath northwest South America revealed by 3‐D finite frequency teleseismic P‐wave tomography. Geochemistry, Geophysics, Geosystems, 22(4). https://doi.org/10.1029/2020GC009431

Corredor, F., 2003. Seismic strain rates and distributed continental deformation in the northern Andes and three-dimensional seismotectonics of northwestern South America. Tectonophysics, 372(3-4), 147-166. https://doi.org/10.1016/S0040-1951(03)00276-2

Cortés, M., Angelier, J., 2005. Current states of stress in the northern Andes as indicated by focal mechanisms of earthquakes. Tectonophysics, 403(1-4), 29-58. https://doi.org/10.1016/j.tecto.2005.03.020

Delvaux, D., Moeys, R., Stapel, G., Melnikov, A., Ermikov, V., 1995. Palaeostress reconstructions and geodynamics of the Baikal region, Central Asia, Part I. Palaeozoic and Mesozoic pre-rift evolution. Tectonophysics, 252(1-4), 61-101.

Delvaux, D., Moeys, R., Stapel, G., Petit, C., Levi, K., Miroshnichenko, A., San'kov, V., 1997. Paleostress reconstructions and geodynamics of the Baikal region, central Asia, Part 2. Cenozoic rifting. Tectonophysics, 282(1-4), 1-38. https://doi.org/10.1016/S0040-1951(97)00210-2

Delvaux, D., Sperner, B., 2003. New aspects of tectonic stress inversion with reference to the Tensor program. Geol Soc London Spec Publ, 212:75–100. https://doi.org/10.1144/GSL.SP.2003.212.01.06

Delvaux, D., Barth, A., 2010. African stress pattern from formal inversion of focal mechanism data. Tectonophysics 482:105-128. https://doi.org/10.1016/j.tecto.2009.05.009

Frohlich, C., 1992. Triangle diagrams: ternary graphs to display similarity and diversity of earthquake focal mechanisms. Physics of the Earth and Planetary interiors, 75(1-3), 193-198. https://doi.org/10.1016/0031-9201(92)90130-N

Frohlich, C., 2006. Deep earthquakes. Institute for Geophysics, Jackson School of Geosciences University of Texas at Austin. 592p. https://doi.org/10.1017/CBO9781107297562

Frohlich, C., Kadinsky-Cade, K., Davis, S.D., 1995. A reexamination of the Bucaramanga, Colombia, earthquake nest. Bulletin of the Seismological Society of America, 85(6), 1622-1634.

Frohlich, C., Nakamura, Y., 2009. The physical mechanisms of deep moonquakes and intermediate-depth earthquakes: How similar and how different? Physics of the Earth and Planetary Interiors, 173(3-4), 365-374. https://doi.org/10.1016/j.pepi.2009.02.004

Garcia-Delgado, H., Velandia, F., Bermúdez, M.A., Audemard, F., 2022. The present-day tectonic regimes of the Colombian Andes and the role of slab geometry in intraplate seismicity. International Journal of Earth Sciences, 111(7), 2081-2099. https://10.1007/s00531-022-02227-9

Gutenberg, B., Richter, C.F., 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34 (4): 185-188. https://doi.org/10.1785/BSSA0340040185

Gutenberg, B., Richter, C.F., 1954. Magnitude and energy of earthquakes, Ann. Geofis., 9, 1-15. https://doi.org/10.4401/ag-5590

Johnston, A.C., Kanter, L.R., Coppersmith, K.J., Cornell, C.A., 1994. The earthquakes of stable continental regions. Volume 1, Assessment of large earthquake potential, Final report No. EPRI-TR-102261-V1. United States: N. Web. https://www.epri.com/research/products/TR-102261-V1

Kagan, Y.Y., 2005. Double-couple earthquake focal mechanism: random rotation and display. Geophysical Journal International 163, 1065-1072. https://doi.org/10.1111/j.1365-246X.2005.02781.x

Karato, S.I., 2008. Deformation of Earth Materials. An Introduction to the Rheology of Solid Earth. 463 p. https://doi.org/10.1017/S0016756809006323

Karato, S.I., Jung, H., Katayama, I., Skemer, P., 2008. Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annu. Rev. Earth Planet. Sci., 36(1), 59-95. https://doi.org/10.1146/annurev.earth.36.031207.124120

Kaverina, A.N., Lander, A.V., Prozorov, A.G., 1996. Global creepex distribution and its relation to earthquake-source geometry and tectonic origin. Geophysical Journal International 125 (1), 249-265. https://doi.org/10.1111/j.1365-246X.1996.tb06549.x

Klyuchevskii, A.V., Dem’yanovich, V.M., 2015. The 3D seismotectonic flow of geological masses in the lithosphere of the Baikal Rift Zone. Journal of Volcanology and Seismology. 9, 48-64. https://doi.org/10.1134/S0742046315010042

Kostrov, B.V., 1974. Seismic moment and energy of earthquakes and seismic flow of rock. Izv. Acad. Sci. USSR Earth Phys. 1, 23-44.

Kostrov, B.V., Das, S., 1988. Principles of earthquake source mechanics. Cambridge University Press. 286 p.

Londoño, J.M, Quintero, S., Vallejo, K., Muñoz, F., Romero, J., 2019. Seismicity of Valle Medio del Magdalena basin, Colombia. Journal of South American Earth Sciences, 92, 565-585. https://doi.org/10.1016/j.jsames.2019.04.003

Londoño, J.M, Vallejo, K., Quintero, S., 2020. Detailed seismic velocity structure of the Caribbean and Nazca Plates beneath Valle Medio del Magdalena region of NE Colombia. Journal of South American Earth Sciences, 103, 102762. https://doi.org/10.1016/j.jsames.2020.102762

Lowrie, W., Fichtner, A., 2020. Fundamentals of geophysics. Cambridge University Press. 419 p. https://doi.org/10.1017/9781108685917

Martínez-Jaramillo, D., Prieto, G.A., 2024. Tectonic setting of the northwestern andes Constrained by a high-resolution earthquake catalog: Block Kinematics. Journal of South American Earth Sciences, 134, 104761. https://doi.org/10.1016/j.jsames.2023.104761

Michael, A.J., 1984. Determination of stress from slip data: faults and folds. Journal of Geophysical Research: Solid Earth, 89 (B13):11517-11526. https://doi.org/10.1029/JB089iB13p11517

Mora-Páez, H., Kellogg, J.N., Freymueller, J.T., Mencin, D., Fernandes, R.M., Diederix, H., Corchuelo-Cuervo, Y., 2019. Crustal deformation in the northern Andes–A new GPS velocity field. Journal of South American Earth Sciences, 89, 76-91. https://doi.org/10.1016/j.jsames.2018.11.002

Mora-Páez, H., Kellogg, J.N., Freymueller, J.T., Gómez, J., Pinilla-Pachon, A.O., 2020. Contributions of space geodesy for geodynamic studies in Colombia: 1988 to 2017.The Geology of Colombia, 4, 479-498. https://doi.org/10.32685/pub.esp.38.2019.14

Nowroozi, A.A., 1971. Seismotectonics of the Persian plateau, eastern Turkey, Caucasus, and Hindu-Kush regions, Bullet. Seism. Soc. Am., 61, (2), 317-341.

Peñaranda, A.W.E., 2023. Inversión del tensor de momentos de eventos pertenecientes al nido sísmico de Bucaramanga utilizando datos regionales. (Tesis de Maestría). Universidad Industrial de Santander. Colombia. https://noesis.uis.edu.co/handle/20.500.14071/14409

Pennington, W.D., 1981. Subduction of the eastern Panama Basin and seismotectonics of northwestern South America. Journal of Geophysical Research: Solid Earth, 86(B11), 10753-10770. https://doi.org/10.1029/JB086iB11p10753

Pérez-Forero, D., Koulakov, I., Vargas, C.A., Gerya, T., Al Arifi, N., 2023. Lithospheric delamination as the driving mechanism of intermediate-depth seismicity in the Bucaramanga Nest, Colombia. Scientific Reports, 13(1), 23084. https://doi.org/10.1038/s41598-023-50159-4

Petruccelli, A., Schorlemmer, D., Tormann, T., Rinaldi, A.P., Wiemer, S., Gasperini, P., Vannucci, G., 2019. The influence of faulting style on the size-distribution of global earthquakes. Earth and Planetary Science Letters, 527, 115791. https://doi.org/10.1016/j.epsl.2019.115791

Poli, P., Prieto, G.A., Yu, C.Q., Florez, M., Agurto-Detzel, H., Mikesell, T.D., Pedraza, P., 2016. Complex rupture of the M 6.3 2015 March 10 Bucaramanga earthquake: Evidence of strong weakening process. Geophysical Journal International, 205(2), 988-994. https://doi.org/10.1093/gji/ggw065

Poveda, E., Monsalve, G., Vargas, C.A., 2015. Receiver functions and crustal structure of the northwestern Andean region, Colombia. Journal of Geophysical Research: Solid Earth, 120(4), 2408-2425. https://doi.org/10.1002/2014JB011304

Prieto, G.A., Beroza, G.C., Barrett, S.A., López, G.A., Florez, M., 2012. Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics, 570, 42-56. https://doi.org/10.1016/j.tecto.2012.07.019

Prieto, G.A., Florez, M., Barrett, S.A., Beroza, G.C., Pedraza, P., Blanco, J.F., Poveda, E., 2013. Seismic evidence for thermal runaway during intermediate‐depth earthquake rupture. Geophysical Research Letters, 40(23), 6064-6068. https://doi.org/10.1002/2013GL058109

Ringwood, A.E., 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica et Cosmochimica Acta, 55(8), 2083-2110. https://doi.org/10.1016/0016-7037(91)90090-R

Riznichenko, Yu.V., 1965a. Seismic rock flow, in: Dinamika zemnoi kory (Dynamics of the Earth’s Crust). Nauka, Moscow, 56‒63 (in Russian).

Riznichenko, Yu.V., 1965b. Relationship between the seismic flow of the rock mass and seismicity. Report of the Academy of Sciences of the USSR, 161(1), 97-99 (in Russian).

Riznichenko, Yu.V., 1992. Problems of seismology: selected papers. Mir Publishers. 462 p. https://doi.org/10.1007/978-3-662-09446-4

Sánchez, J., Götze, H. J., Schmitz, M., 2011. A 3-D lithospheric model of the Caribbean-South American plate boundary. International Journal of Earth Sciences, 100, 1697-1712. https://doi.org/10.1007/s00531-010-0600-8

Schneider, J.F., Pennington, W.D., Meyer, R.P., 1987. Microseismicity and focal mechanisms of the intermediate-depth Bucaramanga Nest, Colombia. Journal of Geophysical Research 92, 13913-13926. https://doi.org/10.1029/JB092iB13p13913

Schorlemmer, D., Wiemer, S., Wyss, M., 2005. Variations in earthquake-size distribution across different stress regimes. Nature 437, 539-542. https://doi.org/10.1038/nature04094

Silverman, B.W. 1986. Density estimation for statistics and data analysis. In: Monographs on Statistics and Applied Probability 26. Chapman and Hall, London. 177 p.

Suter, F., Sartori, M., Neuwerth, R., Gorin, G., 2008. Structural imprints at the front of the Chocó-Panamá indenter: Field data from the North Cauca Valley Basin, Central Colombia. Tectonophysics, 460(1-4), 134-157. https://doi.org/10.1016/j.tecto.2008.07.015

Syracuse, E.M., Maceira, M., Prieto, G.A., Zhang, H., Ammon, C.J., 2016. Multiple plates subducting beneath Colombia, as illuminated by seismicity and velocity from the joint inversion of seismic and gravity data. Earth and Planetary Science Letters, 444, 139-149. https://doi.org/10.1016/j.epsl.2016.03.050

Taboada, A., Rivera, L.A., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Rivera, C., 2000. Geodynamics of the northern Andes: Subductions and intracontinental deformation (Colombia). Tectonics, 19(5), 787-813. https://doi.org/10.1029/2000TC900004

Turcotte, D., Schubert, G., 2014. Geodynamics. Cambridge University Press. https://doi.org/10.1017/CBO9780511843877

Utsu, T., 1966. A statistical significance test of the difference in b-value between two earthquake groups. Journal of Physics of the Earth, 14(2), 37-40. https://doi.org/10.4294/jpe1952.14.37

Van der Hilst, R., Mann, P., 1994. Tectonic implications of tomographic images of subducted lithosphere beneath northwestern South America, Geology, 22, 451-454. https://doi.org/10.1130/0091-7613(1994)022%3C0451:TIOTIO%3E2.3.CO;2

Vargas, C.A., 2020. Subduction geometries in northwestern South America. In: Gómez, J. and Pinilla-Pachon, A.O. (editors), The Geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales. 397-422. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.11

Vargas, C.A., Mann, P., 2013. Tearing and breaking off of subducted slabs as the result of collision of the Panama Arc‐Indenter with northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025-2046. https://doi.org/10.1785/0120120328

Vavryčuk, V., 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms. Geophysical Journal International, 199(1), 69-77. https://doi.org/10.1093/gji/ggu224

Wagner, L. S., Jaramillo, J. S., Ramírez‐Hoyos, L.F., Monsalve, G., Cardona, A., Becker, T.W., 2017. Transient slab flattening beneath Colombia. Geophysical Research Letters, 44(13), 6616-6623. https://doi.org/10.1002/2017GL073981

Wang, Q., 2016. Homologous temperature of olivine: Implications for creep of the upper mantle and fabric transitions in olivine. Science China Earth Sciences, 59, 1138-1156. https://doi.org/10.1007/s11430-016-5310-z

Wang, S., Yu, H., Zhang, Q., Zhao, Y., 2018. Absolute plate motions relative to deep mantle plumes. Earth Planet. Sci. Lett.490, 88-99. https://doi.org/10.1016/j.epsl.2018.03.021

Zaccagnino, D., Doglioni, C., 2022. Earth’s gradients as the engine of plate tectonics and earthquakes. La Rivista del Nuovo Cimento, 45(12), 801-881. https://doi.org/10.1007/s40766-022-00038-x

Zarifi, Z., Havskov, J., 2003. Characteristics of dense nests of deep and intermediate-depth seismicity. Advances in geophysics, 46, 238-278. https://doi.org/10.1016/s0065-2687(03)46004-4

Zarifi, Z., Havskov, J., Hanyga, A., 2007. An insight into the Bucaramanga nest. Tectonophysics, 443(1-2), 93-105. https://doi.org/10.1016/j.tecto.2007.06.004

Descargas

Publicado

2024-12-23

Cómo citar

Pérez, J. L., Salcedo Hurtado, . E. de J., Fernández Córdoba, . J., Cardona Parra, C., & García Millán , N. (2024). Nueva aproximación a la comprensión del régimen sismotectónico del nido sísmico de Bucaramanga. Revista De La Sociedad Geológica De España, 37(2), 31–43. https://doi.org/10.55407/rsge.109103

Número

Sección

Artículos