Cartografía de las alteraciones hidrotermales y de los lineamientos asociados a los depósitos de sulfuros epitermales y masivos de Tifraouine (costa noroeste de Argelia): Utilización de datos Landsat 8 OLI y teledetección

Autores/as

  • Bouchera Labdaoui Houari Boumediene University of Sciences and Technology
  • Hanafi Benali Houari Boumediene University of Sciences and Technology
  • Amina Boughacha Houari Boumediene University of Sciences and Technology
  • Khadidja Moussaoui Houari Boumediene University of Sciences and Technology

DOI:

https://doi.org/10.55407/rsge.96703

Palabras clave:

vulcanismo, alteración, Tifraouine, fracturas, detección

Resumen

En el contexto del estudio de las mineralizaciones relacionadas con las rocas volcánicas del Mioceno de la parte norte de Argelia, los datos del Landsat 8 OLI y las técnicas de teledetección se han utilizado para caracterizar y cartografiar los afloramientos de alteración hidrotermal en las rocas volcánicas del Mioceno de Tifraouine, en la costa noroeste de Argelia, donde se conocen varios indicios de mineralización. Las bandas del infrarrojo de onda corta (SWIR) permitieron identificar las alteraciones de la arcilla, mientras que las bandas del visible e infrarrojo cercano ayudaron a detectar las alteraciones del hierro. Se obtuvieron imágenes de combinación de colores rojo-verde-azul de proporciones 6/7, 4/2 y 5/6. Se realizó un análisis de componentes principales (PCA) para caracterizar las zonas alteradas y extraer los lineamientos. La técnica de filtrado emparejado (MF) permite la detección directa después de aplicar la transformación de fracción de ruido mínima (MNF) y el índice de pureza de píxeles a los espectros, para obtener un mapa de distribución de las especies minerales objetivo en el área estudiada. Los resultados obtenidos por teledetección muestran que las alteraciones hidrotermales están claramente controladas por rasgos tectónicos. Están muy concentradas en la zona de las calderas y se extienden hacia la zona de Bouzedjar, lo que permitió comprobar el mapa realizado según los estudios de campo. Esto contribuirá a los estudios preliminares relacionados con la exploración minera y mejorará el potencial minero de Tifraouine. La adquisición de datos complementarios permitirá ampliar este estudio en los próximos trabajos.

Citas

Abdelnasser, A., Kumral, M., Zoheir, B., Karaman, M., Weihed, P., 2018. REE geochemical characteristics and satellite-based mapping of hydrothermal alteration in Atud gold deposit. Egypt. Journal of African Earth Sciences, 145: 317-330. https://doi.org/10.1016/j.jafrearsci.2018.01.013

Adiri, Z., Lhissou, R., El Harti, A., Jellouli, A., Chakouri, M., 2020. Recent advances in the use of public domain satellite imagery for mineral exploration: A review of Landsat-8 and Sentinel-2 applications. Ore Geology Reviews, 117: 103332. https://doi.org/10.1016/j.oregeorev.2020.103332

Agar, B., Coulter, D., 2007. Remote sensing for mineral exploration a decade perspective 1997-2007. In: Milkereit B (ed) Proceedings of Exploration 07. Fifth Decennial International Conference on mineral Exploration, 109-136.

Ali, A., Pour, A., 2014. Lithological Mapping and Hydrothermal Alteration Using Landsat 8 Data: A Case Study in Ariab Mining District, Red Sea Hills, Sudan. International Journal of Basic and Applied Sciences, 3, 199-208. https://doi.org/10.14419/ijbas.v3i3.2821

Amin Beiranvand, P., Mazlan, H., 2014. Hydrothermal alteration mapping from Landsat 8 data, SarCheshmeh copper mining district, south-eastern Islamic Republic of Iran. Journal of Taibah University for Science 9 (2015) 155-166. https://doi.org/10.1016/j.jtusci.2014.11.008

Azizi, H., Rsaouli, A.A., Babaei, K., 2007. Using SWIR bands from ASTER for discrimination of hydrothermal altered minerals in the Northwest of Iran (SE-Sanandaj City): a key for exploration of copper and gold mineralisation. Research Journal of Applied Sciences, 2 (96): 763-768. https://medwelljournals.com/abstract/?doi=rjasci.2007.763.768

Beane, R.E., 1982. Hydrothermal alteration in silicate rocks, southwestern North America, in Titley, S.R., ed., Advances in geology of the porphyry copper deposits: Univ. Arizona Press, Tucson, 117-137.

Belmouhoub, A., 1995. Rapport sur l'évaluation géochimique de la potentialité de quelques manifestations ferrugineuses du massif de M'Sirda (Algérie Nord-Occidentale). Rapport de fin de cycle C.E.S.E.V, Nancy, 46 p.

Belmouhoub, A., 2004. Les minéralisations sulfurées à Cu, (Au), Pb-Zn associées aux roches volcaniques miocènes du massif de Tifferaouine (Sahel oranais): Pétrographie, géochimie et prospection minière. Magister thesis, U.S.T.H.B, Algiers, 130 p.

Benali, H., 2007. Les minéralisations associées aux roches magmatiques tertiaires du Nord de l'Algérie: Typologie, pétrologie, cadre géodynamique et implications métallogéniques. Thèse de doctorat, U. S. T. H. B, Alger, 173 p.

Boardman, J.W., 1998. Leveraging the high dimensionality of AVIRIS data for improved subpixel target unmixing and rejection of false positives: mixture tuned matched filtering. In: Pasadena, CA. Summaries of the Seventh Annual JPL Airborne Geoscience Workshop, 6.

Boardman, J.W., Kruse, F.A., 1994. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada. Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan: 1407-1418.

Buenemann, M., Martius, C., Jones, J.W., Herrmann, S.M., Klein, D., Mulligan, M., Reed, M.S., Winslow, M., Washington-Allen, R.A., Lal, R., Ojima, D., 2011. Integrative geospatial approaches for the comprehensive monitoring and assessment of land management sustainability: Rationale, Potentials, and Characteristics. Land degradation and development, 22 (2): 226-239. https://doi.org/10.1002/ldr.1074

Cardoso-Fernandes, J., Teodoro, A., Alexandre, L., 2019. Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites. International Journal of Applied Earth Observation and Geoinformation, 76: 10-25. https://doi.org/10.1016/j.jag.2018.11.001

Cardoso-Fernandes, J., Teodoro, A.C., Lima, A., Menuge, J., Brönner, M., Steiner, R., 2022. Sentinel-1 and ALOS data for lineament extraction: a comparative study. Earth Resources and Environmental Remote Sensing/GIS Applications XIII, Berlin, Germany, 122680X. https://doi.org/10.1117/12.2636117

Ciszak, R., 1993. Evolution géodynamique de la chaîne tellienne en Oranie (Algérie occidentale) pendant le Paléozoique et le Mésozoique. Thèse de doctorat, Univ. Toulouse, 513 p.

Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., Vergo, N., 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth, 95: 12653-12680. https://doi.org/10.1029/JB095iB08p12653

Clark, R.N., Swayze, G.A., Gallagher, A., King, T.V.V., Calvin, W.M., 1993. The U.S. Geological Survey, digital spectral library: version 1: 0.2 to 3.0 microns. U.S. Geological Survey Open File Report: 93-592. https://doi.org/10.3133/ofr93592

Cudahy, T., Jones, M., Thomas, M., Laukamp, C., Caccetta, M., Hewson, R., Verrall, M., 2008. Next generation mineral mapping in Queensland: another piece to the precompetitive geoscience data puzzle, Australian Earth Sciences Convention (AESC): 20-24.

Da Cunha Frutuoso, R.M., 2015. Mapping hydrothermal gold mineralization using Landsat 8 data. A case of study in Chaves license, Master thesis, Univ. Porto, Portugal, 85 p.

Ducart, D.F., Silva, A.M., Toledo, C.L.B., Assis, L.M.D., 2016. Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás Mineral Province, Brazil. Brazilian Journal of Geology, 46 (3): 331-349. https://doi.org/10.1590/2317-4889201620160023

Eisele, A., Lau, I., Hewson, R., Carter, D., Wheaton, B., Ong, C., Kaufmann, H., 2012. Applicability of the thermal infrared spectral region for the prediction of soil properties across semi-arid agricultural landscapes. Remote Sensing, 4 (11): 3265-3286. https://doi.org/10.3390/rs4113265

Eldosouky, A.M., Abdelkareem, M., Elkhateeb, S.O., 2017. Integration of remote sensing and aeromagnetic data for mapping structural features and hydrothermal alteration zones in Wadi Allaqi area, South Eastern Desert of Egypt. Journal of African Earth Sciences, 130: 28-37. https://doi.org/10.1016/j.jafrearsci.2017.03.006

ENVI Tutorial., 2013. Exelis visual information solutions. Boulder, Colorado.

Fenet, B., 1975. Recherches sur l'alpinisation de la bordure septentrionale du bouclier africain à partir de l'étude d'un élément de l'orogène nord maghrébin, les monts de Djebel Tessala et les massifs du littoral oranais. Thèse de doctorat, Univ. Nice, 301 p.

Frutuoso, R., Lima, A., Teodoro, A.C., 2021. Application of remote sensing data in gold exploration: targeting hydrothermal alteration using Landsat 8 imagery in northern Portugal. Arabian Journal of Geosciences, 14: 1-18. https://doi.org/10.1007/s12517-021-06786-0

Glaçon, J., 1967. Recherches sur la géologie et les gîtes métallifères du Tell sétifien (Algérie). Publications du Service géologique de l'Algérie, nouvelle série, Bulletin, no. 32.

Goetz, A.F., Rock, F., Hand Rowan, B.N., 1983. Remote sensing for exploration, an overview. Economic Geology, 78: 573-590. https://doi.org/10.2113/gsecongeo.78.4.573

Green, A.A., Berman, M., Switzer, P., Craig, M. D., 1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26 (1): 65-74. https://doi.org/10.1109/36.3001

Guardia, P., 1975. Géodynamique de la marge alpine du continent africain d'après l'étude de l'Oranie Nord Occidentale. Relations structurales et paléogéographiques entre le Rif externe: le Tell et L'avant-pays atlasique. Univ. Nice, 286 p.

Gupta, R.P., 2003. Remote sensing geology. Springer Berlin, Heidelberg, 428 p. https://doi.org/10.1007/978-3-662-05283-9

Gupta, R.P., 2017. Remote sensing geology. Springer. https://doi.org/10.1007/978-3-662-55876-8

Harsanyi, J.C., Chang, C.I., 1994. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Transactions on Geoscience and Remote Sensing, 32: 779-785. https://doi.org/10.1109/36.298007

Himri, Y., Boudghene Stambouli, A., Draoui, B., Himri, S., 2008. An investigation on wind power potential in Tindouf region Algeria. Proceedings of world academy of science, engineering and technology, 33 (7): 1128-1136. https://doi.org/10.1016/j.rser.2008.09.007

http://earthexplorer.usgs.gov [Consulted on 17 March 2014].

https://landsat.gsfc.nasa.gov [Consulted on 10/06/2014].

Hu, B., Xu, Y., Wan, B., Wu, X., Yi., G., 2018. Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China. Ore Geology Reviews, 101: 384-397. https://doi.org/10.1016/j.oregeorev.2018.07.017

Hunt, G.R., 1977. Spectral signatures of particulate minerals in the visible and near infrared, Geophysics, 42: 501-513. https://doi.org/10.1190/1.1440721

Ibrahima, E., Barnabéa, P., Ramanaidoub, E., Pirarda, E., 2018. Mapping mineral chemistry of a lateritic outcrop in new Caledonia through generalized regression using Sentinel-2 andfield reflectance spectra. International Journal of Applied Earth Observation and Geoinformation, 73: 653-665. https://doi.org/10.1016/j.jag.2018.08.004

Inzana, J., Kusky, T., Higgs, G., Tucker, R., 2003. Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. Journal of African Earth Sciences, 37: 59-72. https://doi.org/10.1016/S0899-5362(03)00071-X

Jensen, J.R., 1996. Introducing digital image processing: A remote sensing perspective; 2nd, Prentice Hall Series in geographic information Siences. l'Université du Michigan, 318 p.

Jensen, J.R., 2005. Introductory Digital Image Processing: A Remote Sensing Perspective. 3rd Edition, Prentice Hall, Upper Saddle River. l'Université de Californie, 526 p.

Megartsi, M., 1985. Le volcanisme Mio-Plio-quaternaire de l'Oranie nord occidentale, 296 p.

Mia, B., Fujimitsu, Y., 2012. Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan. Journal of Earth System Science, 121 (4): 1049- 1057. https://doi.org/10.1007/s12040-012-0211-9

Mina, Z., Peyman, A., Reza, N., 2019. Determination of Hydrothermal Alteration Zones Using Remote Sensing Methodes in Tirka Area, Toroud, NE Iran. Journal of the Indian Society of Remote Sensing, 47: 1817-1830. https://doi.org/10.1007/s12524-019-01032-3

Mouffok, K., Boukhechba, M., 1999. Contibution à l'étude petrographique et gîtologique du massif de Tifferaouine (Sondage TS 15). Mémoire d'ingéniorat d'état, USTHB, 157 p.

Mwaniki, M.W., Moeller, M.S., Schellmann, G., 2015. A comparison of Landsat-8 (OLI) and Landsat-7 (ETM+) in mapping geology and visualising lineaments: a case study of central region Kenya. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 7 (W3): 897-903. https://doi.org/10.5194/isprsarchives-XL-7-W3-897-2015

Nait Amara, B., Aissa, D.E., Maouche, S., Braham, M., Machane, D., Guessoum, N., 2019. Hydrothermal alteration mapping and structural features in the Guelma basin (Northeastern Algeria): contribution of Landsat-8 data. Arabian Journal of Geosciences, 12, 94. https://doi.org/10.1007/s12517-019-4224-4

Ninomiya, Y., 2003. A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data. In Geoscience and Remote Sensing Symposium, 2003. IGARSS'03. Proceedings, 3: 1552-1554.

O'Leary, D.W., Friedman, J.D., Pohn, H.A., 1976. Lineament, Linear, Lineation: Some proposed new standard for old terms. Geological Society of America Bulletin, 87: 1463-1469. https://doi.org/10.1130/0016-7606(1976)87<1463:LLLSPN>2.0.CO;2

Peleli, S., Kouli, M., Marchese, F., Lacava, T., Vallianatos, F., Tramutoli, V., 2021. Monitoring temporal variations in the geothermal activity of Miocene Lesvos volcanic field using remote sensing techniques and MODIS - LST imagery, International Journal of Applied Earth Observation and Geoinformation, 95. https://doi.org/10.1016/j.jag.2020.102251

Pique, A., Brahim, L.A., Ouali, R.A., Amrhar, M., Charroud, M., Gourmelen, C., Tricart, P., 1998. Evolution structurale des domaines atlasiques du Maghreb au Méso-Cénozoïque; le rôle des structures héritées dans la déformation du domaine atlasique de l'Afrique du Nord. Bulletin de la Société Géologique de France, 169 (6): 797-810.

Pontual, S., Merry, N., Gamson, P., 2008. Spectral Analysis Guides for Mineral Exploration. Ausspec International Ltd, Victoria, 189 p.

Pour, A., Hashim, M., 2015. Hydrothermal alteration mapping from Landsat-8 data, Sar Chesmeh copper mining district, south-eastern Islamic Republic of Iran. Journal of Taibah University for Science, 9: 155-166. https://doi.org/10.1016/j.jtusci.2014.11.008

Pour, A.B., Hashim, M., Genderen, J.V., 2013. Detection of hydro- thermal alteration zones in a tropical region using satellite remote sensing data: Bau goldfield, Sarawak, Malaysia, Ore Geology Reviews, 54: 181-196. https://doi.org/10.1016/j.oregeorev.2013.03.010

Rameshchandra, P., 2014. A gis based correlation between lineaments and gold occurences of ramagiri-penakacherlaschist belt, Eastern Dharwar craton, India. International Journal of Geology, Earth and Environmental Sciences, (4): 259-267.

Rockwell, B.W., 2013. Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains, Colorado. Scientific Investigations Map, 3252. https://doi.org/10.3133/sim3252

Rowan, L.C., Goetz, A.F.H., Ashley, R.P., 1977. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images. Geophysics, 42 (3): 522- 535. https://doi.org/10.1190/1.1440723

Sabins, F.F., 1999. Remote sensing for mineral exploration. Ore Geology Reviews, 14 (3-4): 157-183. https://doi.org/10.1016/S0169-1368(99)00007-4

Santos, D., Cardoso-Fernandes, J., Lima, A., Teodoro, A. C., 2022. The potential of spectral unmixing method applied to PRISMA hyperspectral images in the identification of Li minerals: an evaluation for prospecting purposes. Paper presented at the SPIE Remote Sensing, Earth Resources and Environmental Remote Sensing /GIS Applications XIII, Berlin, Germany. https://doi.org/10.1117/12.2636034

Scheidt, S., Ramsey, M., Lancaster, N., 2008. Radiometric normalization and image mosaic generation of ASTER thermal infrared data: an application to extensive sand and dune fields. Remote Sensing of Environment, 112: 920-933. https://doi.org/10.1016/j.rse.2007.06.020

Schott, J.R., E.B., 2007. Remote Sensing: The Image Chain Approach, second ed. Oxford University Press, New York, 688 p.

Segal, D.B., 1983. Use of Landsat multispectral scanner data for definition of limonitic exposure in heavily vegetated areas, El Raso Texas, Economic Geology, 78 (4): 711-722. https://doi.org/10.2113/gsecongeo.78.4.711

Souhalia, A., 2001. Contribution à l'étude pétrographique et gîtologique du massif de Tifferaouine (Sondage T22). Mémoire d'ingéniorat d'état, USTHB, 87 p.

Torres-Vera, M.A., Prol-Ledesma, R.M., 2003. Spectral enhancement of selected pixels in thematic mapper images of the Guanajuato district (Mexico) to identify hydrothermally altered rocks. International Journal of Remote Sensing, 24 (22): 4357-4373. https://doi.org/10.1080/0143116031000075134

Turner, DJ., Rivard, B., Groat, LA., 2014. Visible and short-wave infrared reflectance spectroscopy of REE phosphate minerals. American Mineralogist, 99: 1335-1346. https://doi.org/10.2138/am.2014.4674

Van der Meer, F.D., Van derWerff, H.M.A., Van Ruitenbeek, F.J.A., Hecker, C.A., Bakker, W.H., Noomen, M.F., Woldai, T., 2012. Multi- and hyperspectral geologic remote sensing: a review. International Journal of Applied Earth Observation and Geoinformation, 14 (1): 112-128. https://doi.org/10.1016/j.jag.2011.08.002

Wang, G., Du, W., Carranza, E.J.M., 2017. Remote sensing and GIS prospectivity mapping for magmatic-hydrothermal base- and precious-metal deposits in the Honghai district, China. Journal of African Earth Sciences, 128: 97-115. https://doi.org/10.1016/j.jafrearsci.2016.06.020

Woldai, T., Amera, S.A, Carranza, E.J.M., Jemwa, G., Duke, E.F., 2010. Spectral remote sensing of hydrothermal alteration associated with volcanogenic massive sulphide deposits, Gorob-Hope Area, Namibia. 8th International AARSE Conference, Addis Ababa, Ethiopia, 25-29.

Yousefi, M., Tabatabaei, S.H., Rikhtehgaran, R., Pour, A.B., Pradhan, B., 2021. Application of Dirichlet Process and Support Vector Machine Techniques for Mapping Alteration Zones Associated with Porphyry Copper Deposit Using ASTER Remote Sensing Imagery. Minerals, 11 (11): 1-25. https://doi.org/10.3390/min11111235

Zanter, K., 2016. Landsat 8 (L8) Data Users Handbook. Department of the Interior U.S. Geological Survey, South Dakota, 106 p.

Descargas

Publicado

2023-06-19

Cómo citar

Labdaoui, B., Benali, H., Boughacha, A., & Moussaoui, K. (2023). Cartografía de las alteraciones hidrotermales y de los lineamientos asociados a los depósitos de sulfuros epitermales y masivos de Tifraouine (costa noroeste de Argelia): Utilización de datos Landsat 8 OLI y teledetección. Revista De La Sociedad Geológica De España, 36(1), 3–15. https://doi.org/10.55407/rsge.96703

Número

Sección

Artículos