This is an outdated version published on 2022-10-11. Read the most recent version.

Longitudinal and transverse sand transfers between embayed beaches and associated dune fields along the Asturian coast (NW Iberian Peninsula)

Authors

  • Germán Flor Departamento de Geología. Universidad de Oviedo. C/ Arias de Velasco s/n, 33005 Oviedo, España
  • Germán Flor-Blanco Departamento de Geología. Universidad de Oviedo. C/ Arias de Velasco s/n, 33005 Oviedo, España
  • María Rey Ruanova Departamento de Geología. Universidad de Oviedo. C/ Arias de Velasco s/n, 33005 Oviedo, España

DOI:

https://doi.org/10.55407/rsge.94880

Keywords:

embayed beaches, dunes, sands, bioclasts, sedimentary transport

Abstract

In the embayed sandy beaches of the cliff coast of NW Spain (Iberian Peninsula), the siliciclastic sands are mainly supplied by fluvial inputs, while carbonates sands (bioclasts) come from the organisms that colonize the peritidal rocky shore, some inherited. The sedimentological characteristics of these coastal deposits are studied over a wide segment of more than 387 km on the coast of Asturias. From the range (coarse centile) and the inclusive graphical granulometric parameters, as well as the composition of silica/biogenic carbonate rate, can be deduced the transverse transfers between the beach and the associated aeolian dune field, and the longitudinal distribution in accordance with several coastal sections. Generally, from the beach to the aeolian dune field the average mean grain size decreases, the sorting improves, and percentage of biogenic carbonate falls; and, from an embayed beach to the adjacent one, a W-E downcurrent can be inferred due to the sand coastal drift. Large rivers have high siliciclastic discharges that are homogenized with the carbonate bioclasts from the estuarine mouths, whereas maximum carbonates are related with regional and local upwellings. This happens when the coastal current hits against some large promontory or due to the input of nutrient substances from estuaries containing wide, well-developed tidal flats and marshes which increase the proportion of peritidal organisms.

References

Albino, J., Suguio, K., 2011. The influence of sediment grain size and composition on the morphodynamic state of mixed siliciclastic and bioclastic sand beaches in Espirito Santo State, Brazil. Revista Brasileira de Geomorfologia, 12: 81-92. https://doi.org/10.20502/rbg.v12i2.237

Álvarez García, M.A., de Castro, M., Cruz Guerrero, R., Gómez Borrego, Á., Pérez Muñuzuri, V. Stöll, H., 2009. Clima. Evidencias y efectos potenciales del cambio climático en Asturias. Consejería de Medio Ambiente, Ordenación del Territorio e Infraestructuras. Gobierno del Principado de Asturias, 30-65.

Anderson, R.S., Sørensen, M., Willetts, B.B., 1991. A review of recent progress in our understanding of aeolian sediment transport. Acta Mechanica (Suppl), 1: 1-19. https://doi.org/10.1007/978-3-7091-6706-9_1

Anthony, E.J., 2015. Environmental Control: Geology and Sediments. En: G. Masselink, R. Gehrels (Eds). Coastal Environments & Global Change, J. Wiley & Sons, 52-78. https://doi.org/10.1002/9781119117261.ch3

Aranda, M., Gracia, J., Peralta, G., Flor-Blanco, G. 2020. The application of high-resolution mapping for the analysis of recent eco-geomorphological changes in the saltmarshes of San Vicente de la Barquera estuary (North Spain. Journal of Coastal Research, SI, 95: 341-345. https://doi.org/10.2112/SI95-066.1

Arens, S.M., van Boxel, J.H., Abuodha, J.O.Z., 2002. Changes in grain size of sand transport over a foredune. Earth Surface Processes and Landforms, 27: 1163-1175. https://doi.org/10.1002/esp.418

Atlas Climático Ibérico, 2011. Temperatura del aire y precipitación (1971-2000). Agencia Estatal de Meteorología. 79 p.

Bagnold, R.A., 1941. The physics of blown sand and desert dunes. Methuen, London. 265 p.

Barsanti, M., Calda, N., Valloni, R., 2011. The Italian coasts: a natural laboratory for the quality evaluation of beach replenishments. Journal of Coastal Research, SI, 61: 1-7. https://doi.org/10.2112/SI61-001.1

Blott, S.J., Pye, K., 2001. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms, 26: 1237-1248. https://doi.org/10.1002/esp.261

Carter, R.W.G., 1988. Coastal environments: An introduction to the physical, ecological and cultural systems of coastlines. Academic Press Ltd. London. 617 p.

Cendrero, A., Sánchez-Arcilla, A., Zazo, C., 2005. Impacts on coastal areas. En: J.M. Moreno (Ed). Impacts of the climatic change in Spain. Ministerio de Medio Ambiente. Madrid, 451-504.

Chust, G., Borja, Á., Liria, P., Galparsoro, I., Marcos, M., Caballero, A., Castro, R., 2009. Human impacts overwhelm the effects of sea-level rise on Basque coastal hábitats (N Spain) between 1954 and 2004. Estuarine, Coastal and Shelf Science, 84: 453-462. https://doi.org/10.1016/j.ecss.2009.07.010

Chust, G., Caballero, A., Marcos, M., Liria, P., Hernández, C., Borja, Á., 2010. Regional scenarios of sea level rise and impacts on Basque (Bay of Biscay) coastal habitats, throughout the 21st century. Estuarine, Coastal and Shelf Science, 87: 113-124. https://doi.org/10.1016/j.ecss.2009.12.021

Daly, C.J., Winter, C., Bryant, K.R., 2015. On the morphological development of embayed beaches. Geomorphology, 248: 252-263. https://doi.org/10.1016/j.geomorph.2015.07.040

Darryl, L.F., Textoris, D.A., 1972. Size, grain type and mineralogical relationships in recent marine calcareous beach sands. Sedimentary Geology, 7: 89-102. https://doi.org/10.1016/0037-0738(72)90030-9

Davidson-Arnot, R., 2010. Introduction to Coastal Processes and Geomorphology. Cambridge University Press. 442 p.

Dehouck, A., Dupuis, H., Sénéchal, N., 2009. Pocket beach hydrodynamics: The example of four macrotidal beaches, Brittany, France. Marine Geology, 266: 1-17. https://doi.org/10.1016/j.margeo.2009.07.008

Fernández-Valdés, J.M., 1997. Morfología y sedimentación de la plataforma continental interna del área central de Asturias. Tesis Doctoral (inédita). Departamento de Construcción e Ingeniería de la Fabricación. Universidad de Oviedo. 322 p.

Fernández-Valdés, J.M., Flor, G., Viña, C., 1994. The bioclastic component of the inner shelf surficial sediments in the Asturian central area (NW Spain, Bay of Biscay). Gaia, Revista de Geociências, 8: 135-141.

Ferre, B., Sherwood, C.R., Wiber, P., 2010. Sediment transport on the Palos Verdes shelf, California. Continental Shelf Research, 30: 761-780. https://doi.org/10.1016/j.csr.2010.01.011

Figueiras, F.G., Labarta, U., Fernández Reiriz, M.J., 2002. Coastal upwelling, primary production and mussel growth in the Rías Baixas of Galicia. Hydrobiologia, 484: 121-131. https://doi.org/10.1007/978-94-017-3190-4_11

Flor, G., 1978. Relación entre la distribución de sedimentos y la circulación costera en la región del Cabo Peñas. Trabajos de Geología, 10: 183-194.

Flor, G., 1979. Depósitos arenosos de las playas de la región de Cabo Peñas: sedimentología y dinámica. Tesis Doctoral (inédita). Departamento de Estratigrafía. Universidad de Oviedo. 514 p.

Flor, G., 1980. Los carbonatos biogénicos del área intermareal de playa en relación con la geografía y dinámica costeras. Boletín Real Sociedad Española de Historia Natural (Geología), 78: 275-289.

Flor, G., 1981. Los parámetros texturales en las playas y dunas arenosas del borde occidental del Cabo Peñas (Xagó y Verdicio, Asturias). Boletín de la Real Sociedad. Española de Historia Natural (Geología), 79: 89-102.

Flor, G., 1990. Tipología de dunas eólicas. Procesos de erosión-sedimentación costera y evolución litoral de la provincia de Huelva (Golfo de Cádiz occidental, Sur de España). Estudios Geológicos, 46: 99-109. https://doi.org/10.3989/egeol.90461-2442

Flor, G., 2004. Geología Marina. Servitec. Oviedo. 654 p.

Flor, G., Flor-Blanco, G., 2005. An introduction to the erosion and sedimentation problems in the coastal regions of Asturias and Cantabria (NW Spain) and its implications on environmental management. Journal of Coastal Research, SI 49: 58-63.

Flor, G., Flor Blanco, G., 2009. Sedimentología de los depósitos arenosos superficiales de la playa de Vega (Concejo de Ribadesella, Asturias). Revista de la Sociedad Geológica de España, 22 (1-2): 105-121.

Flor, G., Flor-Blanco, G., 2013. Geomorfología del litoral oriental de Asturias. VII Jornadas de Geomorfología Litoral. Guía de Campo. 40 p. Oviedo.

Flor, G., Flor-Blanco, G., 2014a. Raised beaches in the Cantabrian Coast. En: F. Gutiérrez, M. Gutiérrez Elorza (Eds). Landscapes and Landforms in Spain. World Geomorphological Landscapes, 239-248. Springer Science+Business Media Dordrecht. https://doi.org/10.1007/978-94-017-8628-7_20

Flor, G., Flor-Blanco, G., 2014b. Componentes de viento generadores de morfologías y campos de dunas costeras en Asturias (NO de España). Cuaternario y Geomorfología, 28 (3-4): 47-68.

Flor, G., Llera, E.M., Ortea, J.Á., 1982. Los carbonatos biogénicos de los sedimentos de las playas arenosas de Asturias y Cantabria: su origen y significado dinámico. Cuadernos del CRINAS, 2, 77 p.

Flor, G., Martínez Cedrún, P., Flor-Blanco, G., 2011. Campos dunares de Asturias, Cantabria y País Vasco. En: E. Sanjaume, F.J. Gracia (Eds). Las dunas en España, 127-159. Sociedad Española de Geomorfología.

Flor, G., Cabrera Ceñal, R., Suárez González, M.A., Iglesias Ortega, P. J., 1990. Contaminación sólida en el estuario del Nalón (Asturias). IV Reunión Nacional de Geología Ambiental y Ordenación del Territorio, Comunicaciones, 165-180. Universidad de Oviedo. Gijón.

Flor, G., Flor-Blanco, G., Cedrún, P. M., Flores-Soriano, C., Borghero, C. 2019. Aeolian dune fields in the coasts of Asturias and Cantabria (Spain, NW Iberian Peninsula). En: The Spanish Coastal Systems. Springer, Cham, 585-609. https://doi.org/10.1007/978-3-319-93169-2_25

Flor-Blanco, G., Flor, G., 2009. Aspectos geomorfológicos del tramo inferior del estuario de Villaviciosa (Asturias) en relación con su evolución histórica. Revista de la Sociedad Geológica de España, 22: 123-136.

Flor-Blanco, G., Flor, G., 2016. Management of dune fields on the coasts of Asturias, Cantabria and the Basque Country (Cantabrian Sea, NW Iberian Peninsula). En: F.X. Roig-Munar (Ed). Restoration and management of dune systems. Case studies, 35-70. Edition: Càtedra d'Ecosistemes Litorals Mediterranis, Parc Natural del Montgrí, les Illes Medes i el Baix Ter, Museu de la Mediterrània, Publisher: project "Life Pletera" (LIFE13 NAT/ES/001001).

Flor-Blanco, G., Flor, G., 2019. Cantabrian estuaries. En: The Spanish Coastal Systems. Springer, Cham, 415-436. https://doi.org/10.1007/978-3-319-93169-2_18

Flor-Blanco, G., Flor, G., Pando, L., 2013. Evolution of the Salinas-El Espartal and Xagó beach/dune systems in north-western Spain over recent decades: evidence for responses to natural processes and anthropogenic interventions. Geo-Marine Letters, 33: 143-157. https://doi.org/10.1007/s00367-012-0301-3

Flor-Blanco, G., Bruschi, V., Adrados, L., Flor, G., Trenhaile, A.S., Domínguez, M.J., Cendrero, A., Remondo, J., 2015a. Propuesta de un modelo de evolución de costas acantiladas calcáreas: Asturias y Cantabria (N de España). En: G. Malvárez, F., Navas, E. Guisado (Eds). VIII Jornadas de Geomorfología Litoral 2015. Marbella. Geo-Temas, 15: 13-16.

Flor-Blanco, G., Pando, L., Morales, J.A., Flor, G., 2015b. Evolution of beach-dune fields systems following the construction of jetties in estuarine mouths (Cantabrian coast, NW Spain). Environmental Earth Sciences, 73 (3): 1317-1330. https://doi.org/10.1007/s12665-014-3485-1

Flor-Blanco, G., Rubio-Melendi, D., Flor, G., Fernández-Álvarez, J.P., Jackson, D.W.P., 2016. Holocene evolution of the Xagó dune field (Asturias, NW Spain) reconstructed by means of morphological mapping and ground penetrating radar surveys. Geo-Marine Letters, 36: 35-50. https://doi.org/10.1007/s00367-015-0427-1

Flor-Blanco, G., Alcántara-Carrió, J., Jackson, D., Flor, G., Flores-Soriano, C., 2021. Coastal erosion in NW Spain: Recent patterns under extreme storm wave events. Geomorphology, 387: 107767. https://doi.org/10.1016/j.geomorph.2021.107767

Folk, R.L., Ward, W.C., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal Sedimentary Petrology, 27: 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D

García, M.J., Tel, E., Molinero, J., 2012. Sea-level variations on the north and northwest coasts of Spain. ICES Journal Marine Science, 69 (5): 720-727. https://doi.org/10.1093/icesjms/fss058

García-Ordiales, E., Flor-Blanco, G., Roqueñí, N., Covelli, D., Cienfuegos, P., Álvarez, R., Fontolan, G., Loredo, J., 2020. Anthropocene footprint in the Nalón estuarine sediments (northern Spain). Marine Geology, 424: 106167. https://doi.org/10.1016/j.margeo.2020.106167

García-Ramos, J.C., Piñuela, L., Lires, J., 2011. Atlas del Jurásico de Asturias. (2ª Ed). Ed. Nobel, Oviedo. 225 p.

Giles, R.T., Pilkey, O.H., 1965. Atlantic beach and dune sediments of the southern United States. Journal Sedimentary Petrology, 35: 900-910. https://doi.org/10.1306/74D7139D-2B21-11D7-8648000102C1865D

Gómez-Pina, G., Muñoz-Pérez, J., Ramírez, J.L., Ley de Vega-Seoane, C., 2002. Sand dune management problems and techniques, Spain. Journal of Coastal Research, SI 36: 325-32. https://doi.org/10.2112/1551-5036-36.sp1.325

Gómez-Pujol, Ll., Roig-Munar, F.X., Fornós, J.J., Balaguer, P., Mateu, J., 2013. Provenance-related characteristics of beach sediments around the island of Menorca, Balearic Islands (western Mediterranean). Geo-Marine Letters, 33: 195-208. https://doi.org/10.1007/s00367-012-0314-y

González, M., Ferrer, M., Uriarte, A., Urtizberea, A., Caballero, A., 2008. Operational oceanography system applied to the Prestige oil-spillage event. Journal Marine Systems, 72: 178-188. https://doi.org/10.1016/j.jmarsys.2007.07.005

Gutiérrez-Claverol, M., Luque, C., Martínez-García, E., Riuz, F., Suárez, V., 1988. Los lineamientos deducidos de imágenes de satélite de las Zonas Cantábrica y Asturoccidental-leonesa (NW de España). Estudios Geológicos, 44: 263-270. https://doi.org/10.3989/egeol.88443-4544

Hill, P.R., Conway, K., Lintern, D.G., Meulé, S., Picard, K., Barrie, J.V., 2008. Sedimentary processes and sediment dispersal in the southern Strait of Georgia, BC, Canada. Marine Environmental Research, 66: S39-S48. https://doi.org/10.1016/j.marenvres.2008.09.003

Hudson, J., Collinson, J., Leeder, M., 1981. Comparison of methods of size analysis for sand of the Amazon-Solimões Rivers, Brasil and Peru. Sedimentology, 28 (1): 123-128. https://doi.org/10.1111/j.1365-3091.1981.tb01669.x

Johnson, M.J., 1993. The system controlling the composition of clastic sediments. En: M.J. Johnson, A. Basu (Eds). Processes controlling the composition of clastic sediments. Geological Society American, Special Paper, 284: 1-19. https://doi.org/10.1130/SPE284-p1

Klein, A.H.F., Benedet Filho, L, Schumacher, D.H., 2002. Short-term beach rotation processes in distinct headland bay beach systems. Journal of Coastal Research, 18 (3): 442-458.

Lavín, A., Moreno-Ventas, X., Ortiz de Zárate, V., Abaunza, P., Cabanas, J. M., 2007. Environmental variability in the North Atlantic and Iberian waters and its influence on horse mackerel (Trachurus trachurus) and albacore (Thunnus alalunga) dynamics. ICES Journal of Marine Science, 64: 425-438. https://doi.org/10.1093/icesjms/fsl042

Llopis Lladó, N., 1962. Estudio geológico de la región de Cabo Peñas (Asturias). Mapa Geológico de Asturias, Hojas nº 1 y 2. Escala 1/25.000. Real Instituto de Estudios Asturianos RIDEA. Oviedo.

López-Fernández, C., Llana-Funez, S., Fernández-Viejo, G., Domínguez-Cuesta, M.J., Díaz-Díaz, L.M., 2020. Comprehensive characterization of elevated coastal platforms in the north Iberian margin: A new template to quantify uplift rates and tectonic patterns. Geomorphology, 364: 107242. https://doi.org/10.1016/j.geomorph.2020.107242

López Peláez, J., 2017. El estuario de Avilés, 1833/2016. Nieva Ediciones. 157 p.

Loureiro, C., Ferreira, Ó., Cooper, J.A.G., 2012. Geologically constrained morphological variability and boundary effects on embayed beaches. Marine Geology, 329: 1-15. https://doi.org/10.1016/j.margeo.2012.09.010

Martins, L.R., 1965. Significance of skewness and kurtosis in environmental interpretation. Journal of Sedimentary Petrology, 35 (3): 768-770. https://doi.org/10.1306/74D7135C-2B21-11D7-8648000102C1865D

Martins, L.R., 2003. Recent sediments and grain-size analysis. Gravel, 1: 90-105.

Martínez Cedrún, P., Flor, G., Flor-Blanco, G., Maroto González, G., 2014. Relaciones texturales y composición mineralógica de los sistemas de playa/dunas en una costa rocosa: caso de Cantabria (NO de España). Revista de la Sociedad Geológica de España, 27(2): 13-27.

Mason, C.L., Folk, R.L., 1958. Differentiation of beach, dune and aeolian flat environments by size analysis, Mustang Island, Texas. Sedimentary Geology, 56: 167-192.

Matias, A., Ferreira, Ó., Mendes, I., Dias, J.A., Vila-Concejo, A., 2005. Artificial construction of dunes in the South of Portugal. Journal of Coastal Research, 21 (3): 472-481. https://doi.org/10.2112/03-0047.1

McLaren, P., Bowles, D., 1985. The effects of sediment transport on grain size distributions. Journal Sedimentary Petrology, 55: 457-470. https://doi.org/10.1306/212F86FC-2B24-11D7-8648000102C1865D

Medellín, G., Medina, R., Falqués, A., González, M., 2008. Coastline sand waves on a low-energy beach at "El Puntal" spit, Spain. Marine Geology, 250: 143-156. https://doi.org/10.1016/j.margeo.2007.11.011

Middleton, G.V., 1976. Hydraulic interpretation of sand size distributions. Journal Geology, 84: 405-426. https://doi.org/10.1086/628208

Mycielska-Dowgiallo, E., Ludwikowska-Kędzia, M., 2011. Alternative interpretations of grain-size data from Quaternary deposits. Geologos, 17: 189-203. https://doi.org/10.2478/v10118-011-0010-9

Passega, R., Byramjee, R., 1969. Grain size image of clastic deposits. Sedimentology, 13: 233-252. https://doi.org/10.1111/j.1365-3091.1969.tb00171.x

Pedreros, R., Howa, H.L., Michel, D., 1996. Application of grain size trend analysis for the determination of sediment transport pathways in intertidal areas. Marine Geology, 135: 35-49. https://doi.org/10.1016/S0025-3227(96)00042-4

Pérez Estaún, A., Bastida, F., Alonso, J.L., Marquínez, J., Aller, J., Álvarez Marrón, J., Marcos, A., Pulgar, J.A., 1988. A thin-skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone. Tectonics, 7: 517-538. https://doi.org/10.1029/TC007i003p00517

Pilkey, O. H., Morton, R. W., Luternauer, J., 1967. The carbonate fraction of beach and dune sands. Sedimentology, 8: 311-327. https://doi.org/10.1111/j.1365-3091.1967.tb01330.x

Poizot, E., Méar, Y., Biscara, L., 2008. Sediment Trend Analysis through the variation of granulometric parameters: A review of theories and applications. Earth-Science Reviews, 86 (1-4): 15-41. https://doi.org/10.1016/j.earscirev.2007.07.004

Psuty, N.P., 1988. Sediment budget and dune/beach interaction. Journal Coastal Reseach SI, 3: 1-4.

Pye, K., 1982. Negatively skewed aeolian sands from a humid tropical coastal dunefield, northern Australia. Sedimentary Geology, 31: 249-266. https://doi.org/10.1016/0037-0738(82)90060-4

Pye, K., 1983. Coastal dunes. Progress in Physical Geography, 7: 531-557. https://doi.org/10.1177/030913338300700403

Pye, K., Tsoar, H., 1990. Aeolian Sand and Sand Dunes. Unwin Hyman, London. 396 p. https://doi.org/10.1007/978-94-011-5986-9

Pye, K., Saye, S., Blott, S., 2007. Sand dune processes and management for flood and coastal defence: Part 4: Techniques for sand dune management. R & D Technical Report FD1302/TR/4. Department for Environment Food and Rural Affairs, London. 49 p.

Romero, D., 1984. Tipología de formas kársticas y relaciones morfoestructurales en la marina oriental asturiana. Ería, 7: 119-133.

Shepard, F.F., Young, R., 1961. Distinguishing between beach and dune sands. Journal Sedimentary Petrology, 3(12): 196-214.

Short, A.D., 1996. The role of wave height, period, slope, tide range and embaymentisation in beach classifications: A review. Revista Chilena de Historia Natural, 69: 589-604.

Short, A.D., Masselink, G., 1999. Embayed and structurally controlled beaches. En: Handbook of Beach and Shoreface Morphodynamics. John Wiley and Sons, New York, 230-249.

Solohub, J.T., Klovan, J.E., 1970. Evaluation of grain-size parameters on lacustrine environments. Journal Sedimentary Petrology, 40 (1): 81-101. https://doi.org/10.1306/74D71EFB-2B21-11D7-8648000102C1865D

Storlazzi, C.D., Field, M.E., 2000. Sediment distribution and transport along a rocky, embayed coast: Monterey Peninsula and Carmel Bay, California. Marine Geology, 170 (3-4): 289-316. https://doi.org/10.1016/S0025-3227(00)00100-6

Sunamura, T., Horikawa, K., 1974. Two-dimensional beach transformation due to waves. 14th ICCE, Coastal Engineering Comunicaciones, Copenhagen, 53, 920-938. https://doi.org/10.9753/icce.v14.53

Sutherland, R.A., Lee, C.T., 1994. Discrimination between coastal subenvironments using textural characteristics. Sedimentology, 41: 113-1145. https://doi.org/10.1111/j.1365-3091.1994.tb01445.x

Switzer, A.D., Pile, J., 2015. Grain size analysis. En: I. Shennan, A.J. Long, B.P. Horton (Eds). Handbook of sea-level research, AGU & Wiley, 331-348. https://doi.org/10.1002/9781118452547.ch22

Syvitsky, J.P.M., 1991. Principles, methods, and application of particle size analysis. Cambridge University Press, Cambridge, UK. 368 p.

Tait, J.F., 1995. Rocky coasts and inverse methods: sediment transport and sedimentation patterns of Monterey Bay National Marine Sanctuary. Tesis Doctoral, University of California at Santa Cruz, California. 138 p.

Tait, J.F., Revenaugh, J., 1998. Source-transport inversion: An application of geophysical inverse theory to sediment transport in Monterey Bay, California. Journal Geophysical Research, 103, NO. C1: 1275-1283. https://doi.org/10.1029/97JC01909

TOUCT: The Open University Course Team, 1999. Waves, Tides and Shallow-Water Processes (2ª Ed). Chapter 4. Principles and Processes of Sediment Transport, Butterworth-Heinemann, Oxford, 96-124. https://doi.org/10.1016/B978-008036372-1/50005-2

Treguer, P., Lecorre, P., Grall, J.R., 1979. The seasonal variations of nutrients in the upper waters of the Bay of Biscay region and their relation to phytoplankton growth. Deep Sea Research, 26A: 1121-1152. https://doi.org/10.1016/0198-0149(79)90060-8

Trindade, J., Ramos-Pereira, A., 2009. Sedimente textural distribution on beach profiles in a rocky coast (Estremadura-Portugal). Journal of Coastal Research, SI 56: 138-142.

Rosati, J.D., Frey, A.E., Grzegorzewski, A.S., Maglio, C.K., Morang, A., Thomas, R.C., 2015. Conceptual Regional Sediment Budget for USACE North Atlantic Division. U.S. Army Corps of Engineering. Los Angeles, California. 46 p. https://doi.org/10.21236/ADA614647

Tucker, M. (Ed), 1988. Techniques in Sedimentology. Blackwell Scientific Publications, 63-86.

Van der Wal, D., 2000. Grain-size-selective aeolian sand transport on a nourished beach. Journal of Coastal Research, 16: 896-908.

Van Rijn, L.C., 1984. Sediment transport. Part I: Bed load transport. Journal of Hydraulic Engineering, 110 (10): 1431-1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)

Van Rijn, L.C., 2010. Coastal erosion control based on the concept of sediment cells. Report EU Project Concepts and Science for Coastal erosión. Conscience: Deltares, The Netherlands, 80 p.

Woodroffe, C.D., 2002. Coasts: form, process and evolution. Cambridge University Press. 623 p. https://doi.org/10.1017/CBO9781316036518

Young, A.P., Carilli, J.E., 2019. Global distribution of coastal cliffs. Earth Surface Processes and Landforms. 44 (6): 1309-1316. https://doi.org/10.1002/esp.4574

Published

2022-06-28 — Updated on 2022-10-11

Versions

How to Cite

Flor, G., Flor-Blanco, G., & Rey Ruanova, M. (2022). Longitudinal and transverse sand transfers between embayed beaches and associated dune fields along the Asturian coast (NW Iberian Peninsula). Journal of the Geological Society of Spain, 35(1), 15–35. https://doi.org/10.55407/rsge.94880

Issue

Section

Artículos