Stratigraphic and sedimentological characterization of the Sardinero Formation (Late Cretaceous) in Costa Quebrada (Cantabria, Northern Spain)
DOI:
https://doi.org/10.55407/rsge.115620Keywords:
Basque-Cantabrian Basin, calcisphers, hemipelagic, sedimentary truncation, Costa QuebradaAbstract
The Sardinero Formation (Turonian–Campanian), comprising limestone–marl alternations, has been analyzed in five stratigraphic sections along the Costa Quebrada (Northern Cantabrian Basin), where it reachs a thickness of ~450 m. This study presents a sedimentological characterization and interpretation of the main facies types and facies associations. The formation records the reinundation and reactivation of sedimentation in the northwestern Basque–Cantabrian Basin following an extended phase of non-deposition and condensation. The lower part consists of dark marly clay-shales with fine lamination (~1 cm thick), interpreted as distal turbidites or storm-induced deposits, interbedded with nodular calcareous strata indicative of low sedimentation rates and condensation (e.g., abundant planktonic fossils, glauconite, intense bioturbation, and Fe–P oxide concentrations). The bulk of the succession comprises hemipelagic, rhythmically bedded, chalcisphere-rich nodular limestones and marls, deposited on the distal sector of a low-energy, mixed siliciclastic–carbonate open-marine ramp. Estimated sedimentation rates average ~5 cm/kyr, with higher values documented elsewhere in the basin. The formation exhibits an overall shallowing-upward trend, culminating in the sandy limestones of the Cabo de Lata Formation (Upper Campanian–Maastrichtian). Deposition occurred under warm climatic conditions and high sea levels, following Oceanic Anoxic Event 2 (Late Cenomanian–Early Turonian), which significantly impacted marine biota—most notably, the decline of benthic microfauna and the proliferation of chalcispheres. Pre-lithification differentiation between limestones and marls is inferred based on contrasts in skeletal grain content and the angular discordance of bedding across intraformational truncation surfaces. In contrast, irregular carbonate nodules with diffuse marl transitions are interpreted as diagenetic in origin, linked to vertical carbonate redistribution and bioturbation. Several intraformational truncation surfaces identified in the lower half of the succession resemble, by scale and geometry, those documented in contemporary successions in southern England, Normandy and other locations in northern France. These features are attributed to gravitational collapse associated with syn-sedimentary extensional tectonics during the final stages of Bay of Biscay rifting, or alternatively, to halokinetic deformation linked to Keuper salt mobilization.
References
Bahamonde, J.R., Kenter, J.A.M., Della Porta, G, Keim, L., Immenhauser, A., Reijmer, J.J.G., 2004. Lithofacies and depositional processes on a high, steep-margined Carboniferous (Bashkirian–Moscovian) carbonate platform slope, Sierra del Cuera, NW Spain. Sedimentary Geology, 166: 145–156. https://doi.org/10.1016/j.sedgeo.2003.11.019
Bathurst, R.G.C., 1987. Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction. Sedimentology, 34: 749–778. https://doi.org/10.1111/j.1365-3091.1987.tb00801.x
Boudagher-Fadel, M.K., 2008. Evolution and Geological Significance of Larger Benthic Foraminifera, Vol 21. Chapter 5, the Mesozoic large benthic foraminifera: The Cretaceous, 215–295. UCL Press, U.K. https://doi.org/10.1016/S0920-5446(08)00005-8
Buchbinder, B., Benjamini, C., Mimran, Y., Gvirtzman G., 1988. Mass transport in Eocene pelagic chalk on the northwestern edge of the Arabian platform, Shefela area, Israel. Sedimentology, 35: 257–274. https://doi.org/10.1111/j.1365-3091.1988.tb00948.x
Burchette, T.P.,Wright, V.P., 1992. Carbonate ramp depositional systems. Sedimentary Geology, 79: 3–57. https://doi.org/10.1016/0037-0738(92)90003-A
Cendrero, A., Díaz de Terán, J.R., Flor, E., Francés, E., González J.R., Salas L., 1986. Guía didáctica de la franja costera entre la Península de la Magdalena y Liencres (Cantabria) - Universidad de Cantabria, Consejería de Educación del Gobierno de Cantabria. TOMOS I y II.
Christ, N., Immenhauser, A., Wood, R., Darwich, K., Hachenberg, A., 2015. Petrography and environmental controls on the formation of Phanerozoic marine carbonate hardgrounds. Earth-Science Reviews, 151: 176–226. https://doi.org/10.1016/j.earscirev.2015.10.002
Dott, R.H., Bourgeois, J., 1982. Hummocky stratification: significance of variable bedding sequences. Geological Society of America, Bulletin, 93: 663– 680. https://doi.org/10.1130/0016-7606(1982)93<663:HSSOIV>2.0.CO;2
Drzwiecki, P.A., Simo, J.A., 1997. Carbonate platform drowning and oceanic anoxic events on a mid-Cretaceous carbonate platform, south-central Pyrenees, Spain. Journal of Sedimentary Research, 67: 698–714. https://doi.org/10.1306/D426861C-2B26-11D7-8648000102C1865D
Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. En: Clasification of Carbonate Rocks (W.E. Ham, Ed.), Memoir American Association Petroleum Geologists, 1: 108–121. https://doi.org/10.1306/M1357
Einsele, G., 1982. Limestone-marl cycles (Periodites): diagnosis, significance, causes—a review. En: Cyclic and event stratification (G. Einsele, A. Seilacher, Eds.), Berlin, Springer. 8–53. https://doi.org/10.1007/978-3-642-75829-4_2
Ekdale, A.A., Bromley, R.G., 1988. Diagenetic microlamination in chalk. Journal Sedimentary Petrolology, 58: 857–861. https://doi.org/10.1306/212F8E8B-2B24-11D7-8648000102C1865D
Elrick, M., Hinnov, L.A., 2007. Millennial-scale paleoclimate cycles recorded in widespread Palaeozoic deeper water rhythmites of North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 243: 348–372. https://doi.org/10.1016/j.palaeo.2006.08.008.
Esmerode, E.V., Lykke-Andersen, H., Surlyk, F., 2007. Ridge and valley systems in the Upper Cretaceous chalk of the Danish Basin: contourites in an epeiric sea. En: Economic and Palaeoceanographic Significance of Contourite Deposits (A.R. Viana, M. Rebesco, Eds.). Geological Society of London Special Publication, 276: 265–282. https://doi.org/10.1144/GSL.SP.2007.276.01.13
Esmerode, E.V., Surlyk, F., 2009. Origin of channel systems in the Upper Cretaceous Chalk Groupofthe Paris Basin. Marine and Petroleum Geology, 26: 1338–1349. https://doi.org/10.1016/j.marpetgeo.2009.05.001
Feuillée, P., Rat, P., 1971. Structures et paléogéographies Pyrénéo-Cantabriques. En: Histoire Structurale du Golfe de Gascogne (J. Deviser, X. Le Pichon, L. Montardet Eds.), Publications de l’Instittute Français du Pétroleo, Collection Colloques et Séminaires, 22, Technip, Paris, 1–48.
Floquet, M., 1998. Outcrop cycle stratigraphy of shallow ramp deposits: the Late Cretaceous series on the Castil ian Ramp (Northern Spain). En: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (P.C. Graciansky, J. Hardenbol, T. Jacquin, P.R. Vail, Eds.), Society of Economic Paleontologists and Mineralogists Special Publication, 60: 343–361. https://doi.org/10.2110/pec.98.02.0343
Föllmi, K.B., Weisset, H., Bisping, M., Funk, H., 1994. Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin. Geological Society of America Bulletin, 106: 729–746. https://doi.org/10.1130/0016-7606(1994)106<0729:PCISAC>2.3.CO;2
Flügel, E., 2004. Microfacies of Carbonate Rocks. Springer-Verlag, Berlin, 976 pp. https://doi.org/10.1007/978-3-662-08726-8
Gale, A.S., 1996. Turonian correlation and sequence stratigraphy of the Chalk in southern England. En: Sequence Stratigraphy in British Geology (S.P. Hesselbo, D.N. Parkinson, Eds.). Geological Society of London, Special Publication, 103:177–195. https://doi.org/10.1144/GSL.SP.1996.103.01.10
García-Mondéjar, J., Pujalte V., Amiot, A., Mathey, B., 1982. Región Vasco-Cantábrica y Pirineo Navarro. En: El Cretácico de España (A. García, Ed.). Ed. Complutense, Madrid, 49–160.
Gräfe, K.U., 2005. Late Cretaceous benthic foraminifers from the Basque-Cantabrian Basin, Northern Spain. Journal of Iberian Geology. 31: 277–298.
Gräfe, K.U., Wiedmann, J., 1993. Sequence stratigraphy in the Upper Cretaceous of the Basco-Cantabrian Basin, northern Spain. Geologische Rundschau, 82: 327–361. https://doi.org/10.1007/BF00191837
Gräfe, K.U., Wiedmann, J., 1998. Sequence stratigraphy on a carbonate ramp: the Latre Cretaceous Basco-Cantabrian Basin (Northern Spain). En: Mesozoic and Cenozoic Sequence Stratigraphy of European Basins (P.C. Graciansky, J. Hardenbol, T. Jacquin, P.R. Vail, Eds.), Society of Economic Paleontologists and Mineralogists Special Publication, 60: 333–341. https://doi.org/10.2110/pec.98.02.0333
Haq, B.U., 2014. Cretaceous eustasy revisited. Global Planet Change, 113, 44–58, https://doi.org/10.1016/j.gloplacha.2013.12.007
Haq, B.U., Hardenbol, J., Vail, P.R., 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. En: Sea-Level Changes: An Integrated Approach (C.K. Wilgus, B.S. Hastings, C.A. Ross, H.W. Posamentier, J.C. Van Wagoner, C.G.St. C. Kendall (Eds.), Society of Economic Paleontologists and Mineralogists Special Publication, 42: 71–108. https://doi.org/10.2110/pec.88.01.0071
Hart, M.B., 1987. Orbitally-induced cycles in the Chalk facies of the United Kingdom. Cretaceous Research, 8: 335¬–348. https://doi.org/10.1016/0195-6671(87)90003-6
Hines, F.M. 1986., The sedimentation, tectonics and stratigraphy of the cretaceous/tertiary sequence of northwest Santander, Northern Spain. PhD thesis, Univ. Oxford, 274 p.
Huggett, J.M., Gale A.S., 1997. Petrology and paleoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK. Journal Geological Society London, 154: 897–912. https://doi.org/10.1144/gsjgs.154.5.0897
Jarvis, I., Carson, G.A., Cooper, M.K.E., Hart, M.B., Leary, P.N., Tocher, B.A. 1988. Microfossil assemblages and the Cenomanian-Turonian (late Cretaceous) oceanic anoxic event. Cretaceous Research, 9, 3–103. https://doi.org/10.1016/0195-6671(88)90003-1
Jenkyns, H.C., 1974. Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a diagenetical model. En: Pelagic Sediments: on Land and Under the Sea (K.J. Hü, H.C. Jenkyns, Eds.). International Association of Sedimentologists Special Publication, 1: 249–271. https://doi.org/10.1002/9781444304855.ch11
Kennedy, W.J., 1987. Late Cretaceous and early Paceolene Chalk Group sedimentation in the Greater Ekofisk Area, North Sea Graven. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 11: 91–126.
Kennedy, W.J., Garrison, R.E., 1975. Morphology and genesis of nodular chalks and hard-grounds in the Upper Cretaceous of Southern England. Sedimentology, 22: 311–386. https://doi.org/10.1111/j.1365-3091.1975.tb01637.x
Küchler, T., 2000. Upper Cretaceous of the Barranca (Navarra, northern Spain); integrated litho–, bio–, and event stratigraphy. Part II. Campanian Maastrichtian. Acta Geologica Polonica, 50: 441–499.
Livnat, A., Flexer, A., Shafran, N., 1986. Mesozoic unconformities in Israel: characteristics, mode of origin and implications for the development of Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 55: 189–212. https://doi.org/10.1016/0031-0182(86)90150-1
Martín-Chivelet, J., Berasategui, X., Rosales, I., Lorenzo, L., Vera, J.A., Caus, E., Gräfe, K., Maas, R., Puig, C., Segura, M., Robles, S., Floquet, M., Quesada, S., Ruíz-Ortiz, P.A., Fregenal-Martínez, M.A., Salas, R., Arias, C., García, A., Martín-Algarra, A., Meléndez, M.N., Chacón, B., Molina, J.M., Sanz, J.L., Castro, J.M., García-Hernández, M., Carenas, B., García-Hidalgo, J., Gil, J., Ortega, F., 2002. Cretaceous. En: The Geology of Spain (W. Gibbons, T. Moreno, Eds.). Geological Society of London, 255–292. https://doi.org/10.1144/GOSPP.12
McRae, S.G. 1972. Glauconite. Earth Science Review, 8: 397–440. https://doi.org/10.1016/0012-8252(72)90063-3
Möller, N.K., Kvingan, K., 1988. The genesis of nodular limestones in the Ordovician and Silurian of the Oslo región (Norway). Sedimentology, 35: 405– 420. https://doi.org/10.1111/j.1365-3091.1988.tb00994.x
Mortimore, R.N., 2011. A chalk revolution: what have we done to the Chalk of England? Proceedings of the Geologists’ Association, 122: 298–331. https://doi.org/10.1016/j.pgeola.2010.10.003
Mulayim, O., Yilmaz, O.I., Sari B., Tasli, K.M., 2020. Cenomanian–Turonian drowning of the Arabian Carbonate Platform, the İnişdere section, Adıyaman, SE Turkey. En: Cretaceous Climate Events and Short-Term Sea-Level Changes, (M. Wagreich, H.B. Hart, B. Sames, I.O. Yilmaz, Eds.). Geological Society of London Special Publication, 498: 189–210. https://doi.org/10.1144/SP498-2018-130
Munnecke, A., Samtleben, C., 1996. The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden. Facies, 34:159–176. https://doi.org/10.1007/BF02546162
Odin, G.S., Matter, A., 1981. De glauconiarum originae. Sedimentology, 28: 611–641. https://doi.org/10.1111/j.1365-3091.1981.tb01925.x
Olivet, J.L., 1996. Kinematics of the Iberian Plate. Bulletin des Centres de Recherches Exploration-Production Elf Aquitaine, 20: 131–195.
Olszewska-Nejbert D., 2004. Development of the Turonian/Coniacian hard-ground boundary in the Cracow Swell area (Wielkanoc quarry, Southern Poland). Geological Quarterly Journal, 48: 159–170.
Pandey, D.K., Fürsich, F.T., Alberti, M., Sharma, J.K., Swami, N., 2018. Recurrent hardgrounds and their significance for intra-basinal correlations: a case study of upper Bathonian rocks from the western margin of the Indian craton. Journal of Palaeogeography, 7:14. https://doi.org/10.1186/s42501-018-0013-3
Quine, M., Bosence, D., 1991. Stratal geometries, facies, and sea-floor erosion in Upper Cretaceous Chalk, Normandy, France. Sedimentology, 38: 1113–1152. https://doi.org/10.1111/j.1365-3091.1991.tb00375.x
Rebesco, M., Hernández-Molina, J., Van Rooij, D., Wåhlin, A., 2014. Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Marine Geology, 352: 111–154. https://doi.org/10.1016/j.margeo.2014.03.011
Reitner, J., Wilmsen, M., Neuweiler, F., 1995. Cenomanian/Turonian sponge microbialite deep-water hardground community (Liencres, Northern Spain). Facies, 32, 203–212. https://doi.org/10.1007/BF02536869
Robaszynski, F., Hardenbol, J., Caron, M., Amédro, F., Dupuis, Ch., Gonzáles Donoso, J.-M., Linares, D., Gartner, S., 1993. Sequence stratigraphy in a distal environment: the Cenomanian of the Kalaat Senan Region, Central Tunisia. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 17:395–433.
Robles, S., 2014. Evolución geológica de la Cuenca Vasco-Cantábrica. En: Geología de la Cuenca Vasco-Cantábrica (A. Bodego, M. Mendia, A. Aramburu, A. Apraiz, Eds.): Servicio Editorial de la Universidad del País Vasco, UPV-EHU, Bilbao, 9-103.
Tucker, M.E., 1974. Sedimentology of Palaeozoic pelagic limestones: The Devonian griotte (southern France) and Cephalopodenkalk (Germany). En: Pelagic Sediments: on Land and Under the Sea (K.J. Hsü, H.C. Jenkyns, Eds.). International Association of Sedimentologists Special Publication, 1: 71–92. https://doi.org/10.1002/9781444304855.ch4
Tucker, M.E., Wright, V.P., 1990. Carbonate Sedimentology. Blackwell Science. 482 p. https://doi.org/10.1002/9781444314175
Westphal, H., Head, M.J., Munnecke, A., 2000. Differential diagenesis of rhythmic limestone alternations supported by palynological evidence. Journal Sedimentary Research, 70: 715–725. https://doi.org/10.1306/2DC40932-0E47-11D7-8643000102C1865D
Wiese, F., 1997. Das Turon und Unter-Coniac im Nordkantabrischen Becken (Provinz Kantabrien, Nordspanien): Faziesentwicklung, Bio-, Event- und Sequenzstratigraphie. Berliner geowissenschaftliche Abhandlungen. Reihe E, Paläobiologie. Band 24, PhD thesis, Univ. Berlin, 176 p.
Wiese, F., Wilmsen, M., 1999. Sequence stratigraphy in the Cenomanian to Campanian of the North Cantabrian Basin (northern Spain). Neues Jahrbuch für Geologie und Paläontologie, 212: 131–173. https://doi.org/10.1127/njgpa/212/1999/131
Wilmsen, M., 1997. Das Oberalb und Cenoman im Nordkantabri schen Becken (Provinz Kantabrien, Nordspanien): Faziesentwicklung, Bio- und Sequenzstratigraphie. Berliner geowissenschaftliche Abhandlungen. Reihe E, Paläobiologie, Band 23. PhD thesis, Univ. Berlin, 279 p.
Wilson, J.L., 1975. Carbonate Facies in Geologic History, Springer-Verlag, Berlin. 471 pp. https://doi.org/10.1007/978-1-4612-6383-8
Yan, J., Carlson, E.H., 2003. Nodular celestite in the Chihsia formation (Middle Permian) of south China. Sedimentology, 50: 265–278. https://doi.org/10.1046/j.1365-3091.2003.00552.xLobo, F.J., Hernández-Molina, F.J., Somoza, L., Díaz del Río, V., 2001. The sedimentary record of the post-glacial transgression on the Gulf of Cadiz continental shelf (Southwest Spain). Marine Geology, 178: 171-195. https://doi.org/10.1016/S0025-3227(01)00176-1
Downloads
Published
Versions
- 2025-10-15 (5)
- 2025-06-19 (3)
How to Cite
Issue
Section
License
Copyright (c) 2025 Juan Ramón Bahamonde Rionda, Miguel Herrera Durán

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The Author retains the copyright and grants to the Geological Society of Spain the right of first publication and grants non-exclusive distribution rights for this article for the duration of the literary property under Spanish law, in all current or future media, being the work available simultaneously to its publication under the Creative Commons CC BY-NC-SA 4.0 license, which allows copying and transforming the work, but taking into account that the distribution of the transformed work must be under the same license and never for commercial purposes, while acknowledging authorship and original publication in the Revista de la Sociedad Geológica de España.







