Un estudio exploratorio para testar los sedimentos atrapados por marmitas de erosión en ríos sobre roca como indicadores ambientales (NO Macizo Ibérico)

Autores/as

DOI:

https://doi.org/10.17735/cyg.v35i1-2.89054

Palabras clave:

ríos sobre roca; formas erosivas; sedimentos; elementos mayoritarios; elementos traza; noroeste de España

Resumen

La capacidad de las marmitas fluviales para atrapar sedimentos junto con el análisis de los mismos para la evaluación ambiental es un tema de investigación poco estudiado en el caso de pequeños ríos sobre roca. El estudio exploratorio que se presenta, desarrollado en un pequeño río sobre roca del interior de Galicia (noroeste de la Península Ibérica), está centrado en esta cuestión. El estudio partió del análisis de las marmitas fluviales inventariadas con el objetivo de identificar las formas adecuadas para el muestreo y la recolección de sedimentos en su interior.  A continuación, se determinó la granulometría, mineralogía y el contenido de elementos mayoritarios y de elementos traza en los sedimentos. Las marmitas fluviales con profundidad máxima vertical desde 25 cm hasta 1 m, localizadas en el sector central y lateral del canal, presentaron las mejores condiciones para el muestreo de sedimentos. En los sedimentos recolectados en seis marmitas predomina el tamaño de grano grueso-medio y la fracción arenosa. El contenido de elementos mayoritarios y traza está relacionado con la naturaleza de los minerales más refractarios de la roca. Mediante una estrategia de muestreo adecuada, teniendo en cuenta las fracciones granulométricas, muestran potencial en el uso de los elementos traza como indicadores ambientales.

Citas

Alexander, H.S. (1932). Pothole erosion. Journal of Geology, 40, 305-337. https://doi.org/10.1086/623954

Álvarez-Iglesias, P., Andrade, A., Rey, D., Quintana, B., Bernabéu, A., López-Pérez, A., Rubio, B. (2020). Assessment and timing of the anthropogenic imprint and fisheries richness in marine sediments from Ría de Muros (NW Iberian Peninsula). Quaternary International, 566-567, 337-356. https://doi.org/10.1016/j.quaint.2020.05.005

Álvarez-Vázquez, M.A., De Uña-Álvarez, E. (2015). Recursos Geomorfológicos: Evolución Morfológica de las Marmitas de Erosión en el Miño Medio. Actas do VII Simpósio Ibérico sobre a Bacia Hidrográfica do Rio Minho. Câmara Municipal de Vila Nova de Cerveira, Portugal, 1-5.

Álvarez-Vázquez, M.A., De Uña-Álvarez, E. (2017). Growth of sculpted forms in bedrock channels (Miño River, northwest Spain). Current Science, 112 (5), 996-1002. https://doi.org/10.18520/cs/v112/i05/996-1002

Álvarez-Vázquez, M.A., Bendicho, C., Prego, R. (2014). Ultrasonic slurry sampling combined with total reflection X-ray spectrometry for multi-elemental analysis of coastal sediments in a ria system. Microchemical Journal, 112, 172-180. https://doi.org/10.1016/j.microc.2013.09.026

Álvarez-Vázquez, M.A., Prego, R., Ospina-Álvarez, N., Caetano, M., Bernardez, P., Doval, M., Filgueiras, A.V., Vale, C. (2016). Anthropogenic changes in the fluxes to estuaries: Wastewater discharges compared with river loads in small rias. Estuarine, Coastal and Shelf Science, 179, 112-123. https://doi.org/10.1016/j.ecss.2015.08.022

Álvarez-Vázquez, M.A., Prego, R., Caetano, M., De Uña-Álvarez, E., Doval, M., Calvo, S., Vale, C. (2017). Contributions of trace elements to the sea by small uncontaminated rivers: Effects of a water reservoir and a wastewater treatment plant. Chemosphere, 178, 173-186. https://doi.org/10.1016/j.chemosphere.2017.03.053

Barrera Morate, J.L., González Lodeiro, F., Marquínez García, J., Martín Parra, L.M., Martínez Catalán, J.R., Pablo Maciá, J.G. de. (1989). Memoria del mapa geológico de España, Escala 1:200.000, Ourense/Verín. Instituto Tecnológico GeoMinero de España, Madrid, 284 pp.

Biggs, J., Von Fumetti, S., Kelly-Quinn, M. (2017). The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia, 793 (1), 3-39. https://doi.org/10.1007/s10750-016-3007-0

Birch, G. (2020). An assessment of aluminum and iron in normalisation and enrichment procedures for environmental assessment of marine sediment. Science of the Total Environment, 727, 138123. https://doi.org/10.1016/j.scitotenv.2020.138123

Birch, G., Lee, J. (2020). The use of sedimentary metal data in predictive modelling of estuarine contamination, assessment of environmental condition and pollutant source identification (Narrabeen lagoon, Sydney, Australia). Environmental Science and Pollution Research, 27, 43685-43699. https://doi.org/10.1007/s11356-020-10279-0

Borg, H. (1995). Trace elements in lakes. In: B. Salbu and E. Steinnes (Eds.), Trace elements in natural waters. CRC Press, 177-201.

Brunhes, J. (1899). Sur les marmites des îlots granitiques de la cataracte d´Assouan (Haute-Egipte). Compte Rendus de l’Académie des Sciences, 129, 345-357.

Capdevila, R., Floor, P. (1970). Les different types de granites hercyniens et leur distribution dans le nord de l´Espagne. Boletín Geológico y Minero, LXXXI-II-III, 215-225.

CEDEX. (2004). Directiva 2000/60/CE, Análisis de las características de las demarcaciones, Caracterización de los tipos de ríos y lagos. Centro de Estudios y de Experimentación de Obras Públicas, Madrid, 100 pp.

Chen, C., Dynes, J.J., Wang, J., Sparks, D.L. (2014). Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environmental Science & Technology, 48 (23), 13751-13759. https://doi.org/10.1021/es503669u

CHMS. (2020). Documentos de planificación 2015-2021. Confederación Hidrográfica Miño-Sil. https://www.chminosil.es/images/reciente/Documentos_%20iniciales_MINO_SIL_V_DEF.pdf [Accessed 17 February 2020]

Das, B.C. (2018). Development of Streambed Potholes and the Role of Grinding Stones. Journal of Environmental Geography, 11 (1-2), 9–16. https://doi.org/10.2478/jengeo-2018-0002

De Uña-Álvarez, E. (2001). El clima. In: A. Precedo Ledo and J. Sancho Comíns (Dir.), Atlas de Galicia (I) Medio natural. Xunta de Galicia, Santiago de Compostela, 137-155.

De Uña-Álvarez, E., Vidal-Romaní, J.R., Rodríguez Martínez-Conde, R. (2009). Erosive forms in river systems. In: Advances in Studies on Desertification (A. Romero, F. Belmonte, F. Alonso, and F. López, eds.). Editum, Murcia, 465-468.

Dumas, C., Ludwig, W., Aubert, D., Eyrolle, F., Raimbault, P., Gueneugues, A., Sotin, D. (2015). Riverine transfer of anthropogenic and natural trace metals to the Gulf of Lions (NW Mediterranean Sea). Applied Geochemistry, 58, 14-25. https://doi.org/10.1016/j.apgeochem.2015.02.017

Dupré, B., Gaillardet, J., Rousseau, D., Allègre, C.J. (1996). Major and trace elements of river-borne material: The Congo Basin. Geochimica et Cosmochimica Acta, 60 (8), 1301-1321. https://doi.org/10.1016/0016-7037(96)00043-9

Elznicová, J., Grygar, M.T., Popelka, J., Sikora, M., Novák, P., Hošek, M. (2019). Threat of Pollution Hotspots Reworking in River Systems: Case Study of the Ploučnice River (Czech Republic). ISPRS International Journal of Geo-Information, 8 (1), 37. https://doi.org/10.3390/ijgi8010037

Elston, E.D. (1917a). Potholes: their variety, origin and significance (I). The Scientific Monthly, V, 554-567.

Elston, E.D. (1917b). Potholes: their variety, origin and significance (II). The Scientific Monthly, VI, 37-51.

Falkenmark M. (1997). Society’s interaction with the water cycle: a conceptual framework for a more holistic approach. Hydrological Sciences Journal, 42 (4), 451-466. https://doi.org/10.1080/02626669709492046

Fryirs K.A., Brierley, G.J. (2012). Geomorphic analysis of river systems: An approach to reading the landscape. Wiley-Blackwell, Chichester, 360 pp. https://doi.org/10.1002/9781118305454

Gaillardet, J, Dupré, B., Viers, J. (2003). Trace Elements in River Waters. In: J.I. Drever (Ed.), Treatise on Geochemistry, volume 5. Elsevier Science, San Diego, 225-272. https://doi.org/10.1016/B0-08-043751-6/05165-3

Geiki, A. (1865). The Scenery of Scotland. Macmillan, London, 360 pp.

Guinoiseau, D., Bouchez, J., Gélabert, A., Louvat, P., Filizola, N., Benedetti, M.F. (2016). The geochemical filter of large river confluences. Chemical Geology, 441, 191-203. https://doi.org/10.1016/j.chemgeo.2016.08.009

Grygar, T.M., Elznicová, J., Lelková, T., Kiss, T., Balogh, M., Strnad, L., Navrátil, T. (2017). Sedimentary archive of contamination in the confined channel of the Ohře River, Czech Republic. Journal of Soils and Sediments, 17, 2596-2609. https://doi.org/10.1007/s11368-017-1664-x

Håkanson, L. (2006). A dynamic model for suspended particulate matter (SPM) in rivers. Global Ecology and Biogeography, 15, 93-107. https://doi.org/10.1111/j.1466-822X.2006.00196.x

Håkanson, L., Mikrenska, M., Petrov, K., Foster, I. (2005). Suspended particulate matter (SPM) in rivers: Empirical data and models. Ecological Modelling, 183 (2-3), 251-267. https://doi.org/10.1016/j.ecolmodel.2004.07.030

Helios Rybicka, E., Adamiec, E., Aleksander-Kwaterczak, U. (2005). Distribution of trace metals in the Odra River system: Water–suspended matter–sediments. Limnologica, 35 (3), 185-198. https://doi.org/10.1016/j.limno.2005.04.002

Hodge, R.A., Hoey, T.B., Sklar, L.S. (2011). Bed load transport in bedrock rivers: The role of sediment cover in grain entrainment, translation, and deposition. Journal of Geophysical Research Atmospheres, 116, F04028. https://doi.org/10.1029/2011JF002032

Ives, R.L. (1948). Plunge pools, potholes and related features. Rocks and Minerals, 23, 3-10.

James, L.A., Marcus, W.A. (2006). The human role in changing fluvial systems: Retrospect, inventory and prospect. Geomorphology, 79 (3-4), 152-171. https://doi.org/10.1016/j.geomorph.2006.06.017

Ji, S., Zeng, W., Li, L., Ma, Q., Feng, J. (2019). Geometrical characterization of stream potholes in sandstone from the Sunxi River (Chongqing, China) and implications for the development of bedrock channels. Journal of Asian Earth Sciences, 173, 374-385. https://doi.org/10.1016/j.jseaes.2019.01.037

Kanhaiya, S., Singh, S., Singh, C. K., Srivastava, V. K. (2019). Pothole: a unique geomorphological feature from the bedrocks of Ghaghghar River, Son valley, India. Geology, Ecology, and Landscapes. https://doi.org/10.1080/24749508.2018.1558018

Kronvang, B., Wendland, F., Kovar, K., Fraters, D. (2020). Land Use and Water Quality. Water, 12, 2412. https://doi.org/10.3390/w12092412

Lorenc, M.W., Muñoz Barco, P., Saavedra Alonso, J. (1994). The evolution of potholes in granite bedrock, W Spain. Catena, 22, 265-274. https://doi.org/10.1016/0341-8162(94)90037-X

Lorenc, M.W., Muñoz Barco, P., Saavedra Alonso, J. (1995). Marmitas de gigante en el valle del río Jerte como ejemplo de erosión fluvial intensiva por remolinos e influencia tectónica en su distribución y morfología. Cuaternario y Geomorfología, 9 (1/2), 17-26.

Martín-González, F. (2009). Cenozoic tectonic activity in a Variscan basement: Evidence from geomorphological markers and structural mapping (NW Iberian Massif). Geomorphology, 107, 210-225. https://doi.org/10.1016/j.geomorph.2008.12.008

Messerli, B., Grosjean, M., Hofer, T., Nuñez, L., Pfister C. (2000). From nature-dominated to human-dominated environmental changes. Quaternary Science Reviews, 19 (1-5), 459-479. https://doi.org/10.1016/S0277-3791(99)00075-X

Meybeck, M., Helmer, R. (1989). The quality of rivers: from pristine stage to global pollution. Global and Planetary Change, 1 (4), 283-309. https://doi.org/10.1016/0921-8181(89)90007-6

Moatar, F., Abbott, B.W., Minaudo, C., Curie, F., Pinay, G. (2017). Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, and major ions. Water Resources Research, 53, 1270–1287. https://doi.org/10.1002/2016WR019635

Nemec, W., Lorenc, M.W., Saavedra Alonso, J. (1982). Potholed granite terrace in the río Salor valley, western Spain: a study of bedrock erosion by floods. Tecniterrae, 50, 6-21.

Ortega Becerril, J.A., Durán Valsero, J.J. (Eds.) (2010). Patrimonio geológico: los ríos en roca de la Península Ibérica. Instituto Geológico y Minero de España, Madrid, 497 pp.

Ortega, J.A., Gómez-Heras, M., Pérez-López, R., Wohl, E.E. (2014). Multiscale structural and lithologic controls in the development of stream potholes on granite bedrock rivers. Geomorphology, 204, 588-598. https://doi.org/10.1016/j.geomorph.2013.09.005

Ortega‐Becerril J. A., Gómez‐Heras, M., Fort, R., Wohl, E.E. (2017). How does anisotropy in bedrock river granitic outcrops influence pothole genesis and development? Earth Surface Processes and Landforms, 42 (6), 956-968. https://doi.org/10.1002/esp.4054

Rice, K.C. (1999). Trace-Element Concentrations in Streambed Sediment Across the Conterminous United States. Environmental Science and Technology, 33 (15), 2499–2504. https://doi.org/10.1021/es990052s

Richardson, K., Carling, P.A. (2005). A Typology of Sculpted Forms in Open Bedrock Channels. Geological Society of America, Special paper 392, Boulder, Colorado, 108 pp. https://doi.org/10.1130/0-8137-2392-2.1

Silva, D. C., Bellato, C. R., Marques Neto, J. O., Fontes, M.P. F. (2018). Trace elements in river waters and sediments before and after a mining dam breach (Bento Rodrigues, Brazil). Química Nova, 41 (8), 857-866. https://doi.org/10.21577/0100-4042.20170252

Springer, G.S., Tooth, S., Wohl, E.E. (2006). Theoretical modeling of stream potholes based upon empirical observations from the Orange River, Republic of South Africa. Geomorphology, 82 (1-2), 160-176. https://doi.org/10.1016/j.geomorph.2005.09.023

Tessier, A., Rapin, F., Carignan, R. (1985). Trace metals in oxic lake sediments: Possible adsorption onto iron oxyhydroxides. Geochimica et Cosmochimica Acta, 49 (1), 183-194. https://doi.org/10.1016/0016-7037(85)90203-0

Tinkler, J. K., Wohl, E. E. (Eds.) (1998). Rivers over Rock: Fluvial Processes in Bedrock Channels. American Geophysical Union, Washington D.C., 323 pp. https://doi.org/10.1029/GM107

Tschang, H. (1957). Potholes in the river beds of North Taiwan. Erdkunde, XI (4), 292-303. https://doi.org/10.3112/erdkunde.1957.04.05

Turowski, J.M. (2020) Mass balance, grade, and adjustment timescales in bedrock channels. Earth Surface Dynamics, 8, 103–122. https://doi.org/10.5194/esurf-8-103-2020

Uddin, M.J., Jeong, Y.K. (2021). Urban river pollution in Bangladesh during last 40 years: potential public health and ecological risk, present policy, and future prospects toward smart water management. Heliyon, 7 (2), E06107. https://doi.org/10.1016/j.heliyon.2021.e06107

Udomsak, S., Choowong, N., Choowong, M., Vichai Chutakositkanon, V. (2021). Thousands of Potholes in the Mekong River and Giant Pedestal Rock from North-eastern Thailand: Introduction to a Future Geological Heritage Site. Geoheritage, 13 (5). https://doi.org/10.1007/s12371-020-00524-w

Vegas, R. (2010). La continuación de la Cordillera Cántabro-Pirenaica en el borde atlántico de la Península Ibérica. Geogaceta, 48, 179-181.

Verstraeten, G. (2019). Human Impact on Historical Fluvial Sediment Dynamics in Europe. https://www.oxfordbibliographies.com/view/document/obo-9780199363445/obo-9780199363445-0122.xml [Accessed 15 December 2020]. https://doi.org/10.1093/obo/9780199363445-0122

Vidal-Romaní, J.R., Martelli, A., Fernández-Mosquera, D., De Uña, E., Yepes, J. (2005). Galicia Region: Landforms and Morphological Evolution of Granitic Areas. Sixth International Conference on Geomorphology, Zaragoza, 36 pp.

Vidal-Romaní, J.R., Vaqueiro, M., Sanjurjo, J. (2014). Granite Landforms in Galicia. In: F. Gutiérrez and M. Gutiérrez, Landscapes and Landforms of Spain. Springer, Dordrecht, 63-69. https://doi.org/10.1007/978-94-017-8628-7_4

Viers, J., Dupré, B., Gaillardet, J. (2009). Chemical composition of suspended sediments in World Rivers: New insights from a new database. Science of the Total Environment, 407 (2), 853-868. https://doi.org/10.1016/j.scitotenv.2008.09.053

Vital, H., Stattegger, K. (2000). Major and trace elements of stream sediments from the lowermost Amazon River. Chemical Geology, 168 (1-2), 151-168. https://doi.org/10.1016/S0009-2541(00)00191-1

Viveen, W., Braucher, R., Bourlés, D., Schoorl, J., Veldkamp, A., Van Balen, R., Wallinga, J., Fernandez Mosquera, D., Vidal Romani, J., Sanjurjo Sanchez, J. (2012). A 0.65 Ma chronology and incision rate assessment of the NW Iberian Miño River terraces based on 10Be and luminescence dating. Global and Planetary Change, 94-95, 82 - 100. https://doi.org/10.1016/j.gloplacha.2012.07.001

Viveen, W., Schoorl, J.M., Veldkamp, A., van Balen, R.T. (2014). Modelling the impact of regional uplift and local tectonics on fluvial terrace preservation. Geomorphology, 210, 119-135. https://doi.org/10.1016/j.geomorph.2013.12.026

Wentworth, C.K. (1944). Potholes, pits and pans: subaerial and marine. Journal of Geology, 52, 117-130. https://doi.org/10.1086/625198

Whipple, K.X., Hancock, G.S., Anderson, R.S. (2010). River incision into bedrock: Mechanics and relative efficacy of plucking, abrasion, and cavitation. Geological Society of America Bulletin, 112 (3), 490-503. https://doi.org/10.1130/0016-7606(2000)112<490:RIIBMA>2.0.CO;2

Wilkinson, W. B., Leeks, G.J.L., Morris, A., Walling, D.E. (1997). Rivers and coastal research in the Land Ocean Interaction Study. Science of the Total Environment, 194-195, 5-14. https://doi.org/10.1016/S0048-9697(96)05350-8

Wohl, E.E. (2015). Particle dynamics: The continuum of bedrock to alluvial river segments. Geomorphology, 241, 192-208. https://doi.org/10.1016/j.geomorph.2015.04.014

Wohl, E.E. (2020). Rivers in the Landscape. Wiley, Hoboken, Second edition, 500 pp. https://doi.org/10.1002/9781119535409

Wohl, E.E., Merritt, D.M. (2001). Bedrock channel morphology. Geological Society of America Bulletin, 113 (9), 1205-1212. https://doi.org/10.1130/0016-7606(2001)113<1205:BCM>2.0.CO;2

Xu, F., Liu, Z., Cao, Y., Qiu, L., Feng, J., Xu, F., Tian, X. (2017). Assessment of heavy metal contamination in urban river sediments in the Jiaozhou Bay catchment, Gingdao, China. Catena, 150, 9-16. https://doi.org/10.1016/j.catena.2016.11.004

Yepes Temiño, J. (2002). Geomorfología de un sector comprendido entre las provincias de Lugo y Ourense. Laboratorio Xeolóxico de Laxe, Serie Nova Terra, A Coruña, 273 pp.

Descargas

Publicado

2021-06-21

Número

Sección

Artículos de Investigación