Extracciones de sedimento en ríos chilenos: revisión y propuesta de gestión

Autores/as

DOI:

https://doi.org/10.17735/cyg.v38i3-4.109045

Palabras clave:

extracciones de arenas, extracciones de gravas, legislación, Chile

Resumen

Los efectos de las extracciones de áridos en ríos han sido ampliamente estudiados en la literatura. Aunque esta actividad ha sido estrictamente regulada en algunos países, en otros todavía incrementa el número de extracciones, como es el caso de Chile. El objetivo de este trabajo es estudiar el estado actual de las extracciones de áridos en ríos chilenos, describiendo también la legislación actual del país. Los resultados mostraron una tendencia creciente en el número de proyectos aprobados y, aunque están presentes en todo el país, una gran parte de ellos se ubican en la región centro-sur, siendo Ñuble la región con un mayor número de extracciones. La regulación de las actividades de extracción de áridos en Chile se gestiona y evalúa por parte de los gobiernos municipales, después de una evaluación por parte del Departamento de Obras Fluviales, lo que ha conllevado una sobre-extracción de sedimento en algunos ríos. En este contexto, la sociedad chilena ha experimentado un incremento en la conscienciación ambiental, acompañada de la identificación de los principales efectos de las extracciones de áridos en ríos. Recientemente, el gobierno chileno ha discutido una modificación de la ley de extracciones de áridos, con el objetivo de estandarizar la regulación de esta actividad e incorporar una visión socio-ambiental en la evaluación de estos proyectos.

Citas

Alcayaga, H., Palma, S., Caamaño, D., Mao, L., Soto-Alvarez, M. (2019). Detecting and quantifying hydromorphology changes in a chilean river after 50 years of dam operation. Journal of South American Earth Sciences, 93, 252-266. https://doi.org/10.1016/j.jsames.2019.04.018

Alvarez Mardones, G.V. (2019). In-stream mining: supporting and undermining critical infrastructure. Master Thesis. Universidad de Concepción, Concepción, Chile. URL: http://repositorio.udec.cl/jspui/handle/11594/1124.

Andreoli, A., Mao, L., Iroumé, A., Arumi, J.L., Nardini, A., Pizarro, R., Caamaño, D., Meier, C., Link, O. (2012). The need for a hydromorphological approach to Chilean river management. Revista Chilena de Historia Natural, 85, 339-343. https://doi.org/10.4067/S0716-078X2012000300008

Arróspide, F., Mao, L., Escauriaza, C. (2018). Morphological evolution of the Maipo River in central Chile: influence of instream gravel mining. Geomorphology, 306, 182-197. https://doi.org/10.1016/j.geomorph.2018.01.019

Asabonga, M., Cecilia, B., Mpundu, M.C., Vincent, N.M.D. (2017). The physical and environmental impacts of sand mining. Transactions of the Royal Society of South Africa, 721, 1-5. https://doi.org/10.1080/0035919X.2016.1209701

Bañales-Seguel, C., Salazar, A., Mao, L. (2020). Hydro-morphological characteristics and recent changes of a nearly pristine river system in Chilean Patagonia: The Exploradores river network. Journal of South American Earth Sciences, 98, 102444. https://doi.org/10.1016/j.jsames.2019.102444

Batalla, R.J. (2003). Sediment deficit in rivers caused by dams and instream gravel mining. A review with examples from NE Spain. Cuaternario y Geomorfología, 17, 79-91.

Bendixen, M., Iversen, L.L., Best, J., Franks, D.M., Hackeney, C.R., Latrubesse, E.M., Tusting, L.S. (2021). Sand, gravel, and UN Sustainable Development Goals: conflicts, synergies, and pathways forward. One Earth, 4(8), 1095-1111. https://doi.org/10.1016/j.oneear.2021.07.008

Béjar, M., Gibbins, C.N., Vericat, D., Batalla, R.J. (2017). Effects of suspended sediment transport on invertebrate drift. River Research and Applications, 33, 1655-1666. https://doi.org/10.1002/rra.3146

Bermúdez Soto, J. (2007). Fundamentos de derecho ambiental. Ediciones Universitarias de Valparaíso, Vaparaíso, 549 pp.

Booth, D.B., Ross-Smith, K., Haddon, E.K., Dunne, T., Larsen, E.W., Roche, J.W., Stock, G.M., Mahacek, V. (2020). Opportunities and challenges for restoration of the Merced River through Yosemite Valley, Yosemite National Park, USA. River Research and Applications, 36, 1803-1816. https://doi.org/10.1002/rra.3704

Brestolani, F., Solari, L., Rinaldi, M., Lollino, G. (2014). On the morphological impacts of gravel mining: The case of the Orco River. Engineering Geology for Society and Territory, 3, 319-322. https://doi.org/10.1007/978-3-319-09054-2_66

Brown, A.V., Lyttle, M.M., Brown, K.B. (1998). Impacts of gravel mining on gravel bed streams. Transactions of the American Fisheries Society, 2, 171-174. https://doi.org/10.1577/1548-8659(1998)127<0979:IOGMOG>2.0.CO;2

Brousse, G., Liébault, F., Arnaud-Fasetta, G., Breilh, B., Tacon, S. (2021). Gravel replenishment and active-channel widening for braided-river restoration: The case of the Upper Drac River (France). Science of the Total Environment, 766, 142517. https://doi.org/10.1016/j.scitotenv.2020.142517

Cai, X., Ringler, C., Rosegrant, M. W. (2006). Modelling water resources management at the basin level: Methodology and application to the Maipo River Basin. International Food Policy Research Institute, Research Report 149, Washington D.C.

Carling, P.A. (1984). Deposition of fine and coarse sand in an open-work gravel bed. Canadian Journal of Fisheries and Aquatic Sciences, 41, 263-270. https://doi.org/10.1139/f84-030

Carrillo, R., Mao, L. (2020). Coupling Sediment Transport Dynamics with Sediment and Discharge Sources in a Glacial Andean Basin. Water, 12, 3452. https://doi.org/10.3390/w12123452

CChC - Cámara Chilena de la Construcción (2022). Proyecto de ley que regula la extracción de áridos. Comisión de Obras Públicas del Senado, Boletín Nº 15.096-09.

Cendrero, A., Remondo, J., Beylich, A.A., Cienciala, P., Forte, L.M., Golosov, V.N., Gusarov, A.V., Kijowska-Strugala, M., Laute, K., Li, D., Navas, A., Soldati, M., Vergari, F., Zwolinski, Z., Dixon, J.C., Knigth, J., Nadal-Romero, E., Placzkowska, E. (2022). Denudation and geomorphic change in the Anthropocene, a global overview. Earth-Science Reviews, 233, 104186. https://doi.org/10.1016/j.earscirev.2022.104186

Cerda, R., Vergara, R. (2008). Government subsidies and presidential election outcomes: evidence for a developing country. World Development 3611, 2470-2488. https://doi.org/10.1016/j.worlddev.2007.10.019

Chen, W, Zhang, S., Li, R., Shahabi, H. (2018). Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modelling. Science of the Total Environment, 644, 1006-1018. https://doi.org/10.1016/j.scitotenv.2018.06.389

Dunne, T., Dietrich, W.E., Humphrey, N.F., Tubbs D.W. (1981). Geologic and geomorphic implications for gravel supply. In: Proceedings of the Conference on Salmon-Spawning Gravel: A Renewable Resource in the Pacific Northwest? Washington Water Resource Center, Pullman, 75-100.

Elgueta, A., Thoms, M.C., Górski, K., Díaz, G., Habit, E.M. (2019). Functional process zones and their fish communities in temperate Andean river networks. River Research and Applications, 3510, 1702-1711. https://doi.org/10.1002/rra.3557

Figueroa, R. (2000). Régimen legal de la extracción de áridos. Revista de Derecho Administrativo Económico, 22, 357-383. https://doi.org/10.7764/redae.4.6

Gavriletea, M.G. (2017). Environmental impacts of sand exploitation. Analysis of sand market. Sustainability, 97, 1118. https://doi.org/10.3390/su9071118

Habit, E., Zurita, A., Díaz, G., Manosalva, A., Arriagada, P., Link, O., Górski, K. (2022). Latitudinal and Altitudinal Gradients of Riverine Landscapes in Andean Rivers. Water, 1417, 2614. https://doi.org/10.3390/w14172614

Hafs, A.W., Harrison, L.R., Utz, R.M., Dunne, T. (2014). Quantifying the role of woody debris in providing bioenergetically favorable habitat for juvenile salmon. Ecological Modelling, 285, 30-38. https://doi.org/10.1016/j.ecolmodel.2014.04.015

Hajdukiewicz, H., Wyżga, B. (2018). Aerial photo-based analysis of the hydromorphological changes of a mountain river over the last six decades: The Czarny Dunajec, Polish Carpathians. Science of the Total Environment, 648, 1598-1613. https://doi.org/10.1016/j.scitotenv.2018.08.234

Hayer, C.A., Irwin, E.R. (2008). Influence of gravel mining and other factors on detection probabilities of Coastal plain fishes in the Mobile River Basin, Alabama. Transactions of the American Fisheries Society, 137(6), 1606-1620. https://doi.org/10.1577/T07-153.1

Instituto Nacional de Estadística, INE (2018). Síntesis de resultados de CENSO 2017. Chile.

Kiss, T., Nagy, Z. and Balogh, M. (2017). Floodplain level development induced by human activity-case study in the Lower Maros/Mureş River, Romania and Hungary. Carpathian Journal of Earth and Environmental Sciences, 121, 83-93.

Kondolf, G.M. (1994a). Environmental planning in regulation and management of instream gravel mining in California. Landscape and Urban Planning, 29, 185-199. https://doi.org/10.1016/0169-2046(94)90027-2

Kondolf, G.M. (1994b). Geomorphic and environmental effects of instream gravel mining. Landscape and Urban Planning, 28, 225-243. https://doi.org/10.1016/0169-2046(94)90010-8

Kondolf, G.M. (1997). Hungry water: effects of dams and gravel mining on river channels. Environmental Management, 214, 533-551. https://doi.org/10.1007/s002679900048

Kondolf, G.M., Smeltzer, M., Kimball, L. (2001). Freshwater gravel mining and dredging issues. White Paper, Centre for Environmental Design Research, 130 pp.

Mao, L. (2023). The geomorphological and ecological functioning of the Silala River. WIREs Water, e1691. https://doi.org/10.1002/wat2.1691

Martín-Vide, J.P., Plana-Casado, A., Sambola, A., Capapé, S. (2015). Bedload transport in a river confluence. Geomorphology, 250, 15-28. https://doi.org/10.1016/j.geomorph.2015.07.050

Ministry of Environment, MMA (2022). Sistema de evaluación de impacto ambiental. URL: https://seia.sea.gob.cl/busqueda/buscarProyectoAction.php?nombre=extraccion Accessed: August 1, 2022.

Ministry of Housing and Urban Planning - Ministerio de Vivienda y Urbanismo. (2021). Dinámica de Crecimiento Urbano de las Ciudades Chilenas. Centro de Estudios de Ciudad y Territorio.

Mori, N., Brancelj, A. (2011.) Invertebrate drift during instream gravel extraction in the River Bača, Slovenia. Fundamental and Applied Limnology, 1782, 121-130. https://doi.org/10.1127/1863-9135/2011/0178-0121

Mori, N., Simči, T., Lukančič, Brancelj, A. (2011). The effect of instream gravel extraction in a pre-alpine gravel-bed river on hyporheic invertebrate community. Hydrobiologia, 667, 15-30. https://doi.org/10.1007/s10750-011-0648-x

Muñoz, E.E., Nuñez, F., Mohammadi, J. (2009). Investigation of Common Causes of Bridge Collapse in Colombia. Practice Periodical on Structural Design and Construction, 144, 194-200. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000006

Orrego, K., Harris, P., Cavada, J.P. (2016). Regulación jurídica de la extracción de áridos. Biblioteca del Congreso Nacional de Chile, Departamento de Estudios, Extensión y Publicaciones.

Owens, P.N. (2020). Soil erosion and sediment dynamics in the Anthropocene: a review of human impacts during a period of rapid global environmental change. Advances in Sediment Science and Management, 20, 4115-4143. https://doi.org/10.1007/s11368-020-02815-9

Pacheco, F., Rojas, O., Hernández, E., Caamaño, D. (2022). Effects on Fluvial Geomorphology and Vegetation Cover following Hydroelectric Power Plant Operation: A Case Study in the Maule River Chile. Water, 14(11), 1673. https://doi.org/10.3390/w14111673

Pham Van, C., Chua, V. (2020). Numerical simulation of hydrodynamic characteristics and bedload transport in cross sections of two gravel-bed rivers based on one-dimensional lateral distribution method. International Journal of Sediment Research, 35, 203-216. https://doi.org/10.1016/j.ijsrc.2019.12.001

Rascher, E., Rindler, R., Habersack, H., Sass, O. (2018). Impacts of gravel mining and renatyuration measures on the sediment flux and budget in an alpine catchment (Johnsbach Valley, Austria). Geomorphology, 318, 404-420. https://doi.org/10.1016/j.geomorph.2018.07.009

Rempel, L.L., Church, M. (2009). Physical and ecological response to disturbance by gravel mining in a large alluvial river. Canadian Journal of Fisheries and Aquatic Sciences, 66, 52-71. https://doi.org/10.1139/F08-184

Rinaldi, M., Wyzga, B., Surian, N. (2005). Sediment mining in alluvial channels: physical effects and management perspectives. River Research and Applications, 217, 805-828. https://doi.org/10.1002/rra.884

Rivera, D. (2021). El laberinto institucional del agua. Revista Universitaria UC, 164. https://revistauniversitaria.uc.cl/dossier/el-laberinto-institucional-del-agua/13825/

Roberge, M. (2002). Human modification of the geomorphologically unstable salt river in Metropolitan Phoenix. The Professional Geographer, 542, 175-189. https://doi.org/10.1111/0033-0124.00324

Romero, F.I., Cozano, M.A., Gangas, R.A., Naulin, P.I. (2014). Zonas ribereñas: protección, restauración y contexto legal en Chile. Bosque, 351, 3-12. https://doi.org/10.4067/S0717-92002014000100001

Sear, D.A., Archer, D. (1998). Effects of gravel extraction on stability of gravel-bed rivers: the Wooler Water, Northumberland, UK. In: Gravel-bed Rivers in the Environment (Klingeman, P.C., Beschta, R.L., Komar, P.D, Bradley, J.B.; Eds). Water Resources Publications, LLC: Highlands Ranch, CO, USA, 415-432.

Simanjuntak, C., Gaiser, T., Ahrends, H. E., Ceglar, A., Singh, M., Ewert, F., Srivastava, A. K. (2023). Impact of climate extreme events and their causality on maize yield in South Africa. Nature, 13, 12462. https://doi.org/10.1038/s41598-023-38921-0

Syvitski, J., Restrepo Ángel, J., Saito, Y., Overeem, I., Vörösmarty, C.J., Wang, H., Olago, D. (2022). Earth's sediment cycle during the Anthropocene. Nature Reviews Earth & Environment, 3, 179-196. https://doi.org/10.1038/s43017-021-00253-w

Ulloa, H., Iroumé, A., Picco, L., Vergara, G., Sitzia, T., Mao, L., Mazzorana, B. (2020). Do the morphological characteristics of Chilean gravel-bed rivers exhibit latitudinal patterns? Journal of South American Earth Sciences, 99, 102522. https://doi.org/10.1016/j.jsames.2020.102522

United Nations Environment Programme - UNEP. (2014). Sand, rarer than one thinks. URL: http://www.unep.org/pdf/UNEP_GEAS_March_2014.pdf Accessed: August 3, 2022.

Valdés-Pineda, R., Pizarro, R., García-Chevesich, P., Valdés, J.B., Olivares, C., Vera, M., Balocchi, F., Pérez, F., Vallejos, C., Fuentes, R., Abarza, A., Helwig, B. (2014). Water governance in Chile: Availability, management and climate change. Journal of Hydrology, 519, 2538-2567. https://doi.org/10.1016/j.jhydrol.2014.04.016

Villablanca, M.L., Piqué, G., Iroumé, A., Mazzorana, B., Batalla, R.J. (2023). Rivers in Contrasted climates React Differently to Dams: Geomorphological evidence from Chile. Journal of South American Earth Sciences, 131, 104625. https://doi.org/10.1016/j.jsames.2023.104625

Wyżga, B. (2001). A geomorphologist’s criticism of the engineering approach to channelization of gravel-bed rivers: case study of the Raba River, Polish Carpathians. Environmental Management, 283, 341-358. https://doi.org/10.1007/s0026702454

Wyżga, B. (2007). A review on channel incision in the Polish Carpatian rivers during the 20th century. In: Habersack, H., Piégay, H., Rinaldi, M. (Eds.). Gravel-bed rivers VI: From process understanding to river restoration. Developments in Earth Surface Processes, 817 pp. https://doi.org/10.1016/S0928-2025(07)11142-1

Descargas

Publicado

2024-12-17

Número

Sección

Artículos de Investigación