Phylogeography of the Neanderthals of the Iberian Peninsula. State of the art
DOI:
https://doi.org/10.17735/cyg.v37i3-4.102641Keywords:
Neanderthal, Phylogeography, Iberian Peninsula, Ancient DNA, Middle PaleolithicAbstract
The ability to analyze Neanderthal DNA extracted from skeletal remains and sediments has opened up opportunities for proposing models regarding the phylogeography of this extinct species. The fields of archaeo-paleontology now face the challenge of providing meaningful insights through a dialogue with genetic data. The Iberian Peninsula's rich archaeological record can play a pivotal role in advancing this area of study. Thus far, researchers have identified three separate radiations of Neanderthal populations. Around 145-130 ka (during MIS 6), a divergence occurred, leading to the emergence of Neanderthal populations in Altai (Siberia), as well as other ancient European groups in Hohlenstein-Stadel (Germany) and Scladina (Belgium). Additionally, there is evidence of Neanderthal presence in the lower levels of the Galería de las Estatuas (GE) in Iberia, complemented by findings in Valdegova, both located in Spain's Burgos region. Approximately 105 ka, a second wave of Neanderthal dispersal is discerned, in which western populations extended their presence through Siberia and supplanted the indigenous population, often referred to as the 'Altai Neanderthal.' The possible origin of this dispersal can be traced back to the Micoquian cultures of Central and Eastern Europe, Crimea, and the Caucasus. In the Iberian Peninsula, this event is marked by the emergence of novel genetic profiles observed in the upper levelsof the GE and possibly in Gibraltar (Forbes Quarry). Around 55 Ka, another Neanderthal radiation event was identified, possibly as a result of population fragmentation during MIS 4. This gave rise to what is commonly referred to as the 'late Neanderthals,' encompassing the diversity represented at sites such as Goyet and Spy in Belgium, Vindija in Croatia, and Mezmaiskaya 2 in the North Caucasus. This event marked the onset of a second population replacement that occurred between 47 and 39 ka, as evidenced at Mezmaiskaya (Russian Federation). The mitochondrial DNA (mtDNA) from El Sidrón in Spain falls within this group, along with the holotype of the Neanderthal species (Feldhofer, Germany). It remains to be determined which of the other Iberian collections would be classified within this group, and whether relict populations that coexisted with the newly arrived groups persisted. Around 43 ka, it appears that another potential wave of Neanderthal migrations took place in Iberia, this time associated with the Chatelperronian culture, which represents a distinct departure from the technology of the preceding Middle Paleolithic. These findings collectively signal a significant shift in the way we study the evolution of H. neanderthalensis. The fields of classical and molecular sciences are now converging to formulate a comprehensive theory on the phylogeography of Neanderthals.
Downloads
References
Aguirre, E. (2007). Neandertales ibéricos. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales, 101(1), 203-210.
Andreeva, T. V., Manakhov, A. D., Gusev, F. E., Patrikeev, A. D., Golovanova, L. V., Doronichev, V. B., . . . Rogaev, E. I. (2022). Genomic analysis of a novel Neanderthal from Mezmaiskaya Cave provides insights into the genetic relationships of Middle Palaeolithic populations. Scientific Reports, 12(1), 13016. https://doi.org/10.1038/s41598-022-16164-9
Arsuaga, J. L., Martinez, I., Arnold, L. J., Aranburu, A., Gracia-Tellez, A., Sharp, W. D., . . . Carbonell, E. (2014). Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science, 344(6190), 1358-1363. https://doi.org/10.1126/science.1253958
Bermúdez de Castro, J. M., Arsuaga, J. L., Carbonell, E., Rosas, A., Martinez, I., y Mosquera, M. (1997). A Hominid from the Lower Pleistocene of Atapuerca, Spain: Possible Ancestor to Neandertals and Modern Humans. Science, 276, 1392-1394. https://doi.org/10.1126/science.276.5317.1392
Binford, L. R., y Binford, S. R. (1966). A Preliminary Analysis of Functional Variability in the Mousterian of Levallois Facies. American Anthropologist, 68(2), 238-295. https://doi.org/10.1525/aa.1966.68.2.02a001030
Bordes, F., y de Sonneville-Bordes, D. (1970). The Significance of Variability in Palaeolithic Assemblages. World Archaeology, 2(1), 61-73. http://www.jstor.org/stable/124167. https://doi.org/10.1080/00438243.1970.9979464
Carrión, J. S., Ochando, J., Fernández, S., Blasco, R., Rosell, J., Munuera, M., . . . Finlayson, C. (2018). Last Neanderthals in the warmest refugium of Europe: Palynological data from Vanguard Cave. Review of Palaeobotany and Palynology, 259, 63-80. https://doi.org/10.1016/j.revpalbo.2018.09.007
Dalén, L., Orlando, L., Shapiro, B., Brandström-Durling, M., Quam, R., Gilbert, M. T. P., . . . Götherström, A. (2012). Partial Genetic Turnover in Neandertals: Continuity in the East and Population Replacement in the West. Molecular Biology and Evolution, 29(8), 1893-1897. https://doi.org/10.1093/molbev/mss074
Garralda, M. (2005). Los Neandertales en la Península Ibérica. Munibe, 57, 289-314.
Gómez-Robles, A. (2019). Dental evolutionary rates and its implications for the Neanderthal-modern human divergence. Science Advances, 5(5), eaaw1268. https://doi.org/10.1126/sciadv.aaw1268
Gómez-Robles, A., Bermúdez de Castro, J. M., Arsuaga, J.-L., Carbonell, E., y Polly, P. D. (2013). No known hominin species matches the expected dental morphology of the last common ancestor of Neanderthals and modern humans. Proceedings of the National Academy of Sciences, 110(45), 18196-18201. https://doi.org/10.1073/pnas.1302653110
Hajdinjak, M., Fu, Q., Hübner, A., Petr, M., Mafessoni, F., Grote, S., . . . Kelso, J. (2018). Reconstructing the genetic history of late Neanderthals. Nature, 555, 652. https://www.nature.com/articles/nature26151#supplementary-information. https://doi.org/10.1038/nature26151.
Harvati, K., Panagopoulou, E., y Karkanas, P. (2003). First Neanderthal remains from Greece: the evidence from Lakonis. Journal of Human Evolution, 45(6), 465-473. http://www.sciencedirect.com/science/article/B6WJS-49WMVYY-2/1/bc5dc106ec210030a77aefb60f8e6a54. https://doi.org/10.1016/j.jhevol.2003.09.005
Hublin, J.-J. (2009). The origin of Neandertals. Proceedings of the National Academy of Sciences, 106(38), 16022-16027. https://doi.org/10.1073/pnas.0904119106
Hublin, J.-J., y Roebroeks, W. (2009). Ebb and flow or regional extinctions? On the character of Neandertal occupation of northern environments. Comptes Rendus Palevol, 8(5), 503-509. https://doi.org/10.1016/j.crpv.2009.04.001
Hublin, J. J. (1998). Climatic changes, paleogeography, and the evo-lution of the Neandertals. In T. Akazawa, K. Aoki, y O. Bar-Yosef (Eds.), Neandertals and modern humans in Western Asia (pp. 295-310). Plenum. https://doi.org/10.1007/0-306-47153-1_18
Kuhlwilm, M., Gronau, I., Hubisz, M. J., de Filippo, C., Prado-Martinez, J., Kircher, M., . . . Castellano, S. (2016). Ancient gene flow from early modern humans into Eastern Neanderthals [Article]. Nature, 530, 429–433. https://doi.org/10.1038/nature16544. https://doi.org/10.1038/nature16544
Lalueza-Fox, C., Rosas, A., y de la Rasilla, M. (2012). Palaeogenetic research at the El Sidrón Neanderthal site. Annals of Anatomy, 194(1), 133-137. http://www.scopus.com/inward/record.url?eid=2-s2.0-84855507776ypartnerID=40ymd5=b72fe9e937f0410c8dc42c3ce3aabb33. https://doi.org/10.1016/j.aanat.2011.01.014
Mafessoni, F., Grote, S., de Filippo, C., Slon, V., Kolobova, K. A., Viola, B., . . . Pääbo, S. (2020a). A high-coverage Neandertal genome from Chagyrskaya Cave. 117(26), 15132-15136. https://doi.org/10.1073/pnas.2004944117
Mafessoni, F., Grote, S., de Filippo, C., Slon, V., Kolobova, K. A., Viola, B., . . . Pääbo, S. (2020b). A high-coverage Neandertal genome from Chagyrskaya Cave. Proceedings of the National Academy of Sciences of the USA, 117(26), 15132-15136. https://doi.org/10.1073/pnas.2004944117
Marín-Arroyo, A. B., Rios-Garaizar, J., Straus, L. G., Jones, J. R., de la Rasilla, M., González Morales, M. R., . . . Ocio, D. (2018). Chronological reassessment of the Middle to Upper Paleolithic transition and Early Upper Paleolithic cultures in Cantabrian Spain. PLoS ONE, 13(4), e0194708. https://doi.org/10.1371/journal.pone.0194708
Martinon-Torres, M., Bermudez de Castro, J. M., Gomez-Robles, A., Prado-Simon, L., y Arsuaga, J. L. (2012). Morphological description and comparison of the dental remains from Atapuerca-Sima de los Huesos site (Spain) [Research Support, Non-U.S. Gov't]. J Hum Evol, 62(1), 7-58. https://doi.org/10.1016/j.jhevol.2011.08.007
Morales, J. I., Cebrià, A., Burguet-Coca, A., Fernández-Marchena, J. L., García-Argudo, G., Rodríguez-Hidalgo, A., . . . Fullola, J. M. (2019). The Middle-to-Upper Paleolithic transition occupations from Cova Foradada (Calafell, NE Iberia). PLoS ONE, 14(5), e0215832. https://doi.org/10.1371/journal.pone.0215832
Morales, J. I., Cebrià, A., Soto, M., Rodríguez-Hidalgo, A., Hernando, R., Moreno-Ribas, E., . . . Rosas, A. (2023). A new assemblage of late Neanderthal remains from Cova Simanya (NE Iberia) [Brief Research Report]. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1230707
Peyrégne, S., Slon, V., Mafessoni, F., de Filippo, C., Hajdinjak, M., Nagel, S., . . . Prüfer, K. (2019). Nuclear DNA from two early Neandertals reveals 80,000 years of genetic continuity in Europe. 5(6), eaaw5873. https://doi.org/10.1126/sciadv.aaw5873
Picin, A., Hajdinjak, M., Nowaczewska, W., Benazzi, S., Urbanowski, M., Marciszak, A., . . . Talamo, S. (2020). New perspectives on Neanderthal dispersal and turnover from Stajnia Cave (Poland). Scientific Reports, 10(1), 14778. https://doi.org/10.1038/s41598-020-71504-x
Posth, C., Wißing, C., Kitagawa, K., Pagani, L., van Holstein, L., Racimo, F., . . . Krause, J. (2017). Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals [Article]. 8, 16046. https://doi.org/10.1038/ncomms16046
Prüfer, K., de Filippo, C., Grote, S., Mafessoni, F., Korlević, P., Hajdinjak, M., . . . Pääbo, S. (2017). A high-coverage Neandertal genome from Vindija Cave in Croatia [10.1126/science.aao1887]. Science. https://doi.org/10.1126/science.aao1887
Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., . . . Pääbo, S. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481), 43-49. https://doi.org/10.1038/nature12886
Rios-Garaizar, J., Iriarte, E., Arnold, L. J., Sánchez-Romero, L., Marín-Arroyo, A. B., San Emeterio, A., . . . Ortega, I. (2022). The intrusive nature of the Châtelperronian in the Iberian Peninsula. PLoS ONE, 17(3), e0265219. https://doi.org/10.1371/journal.pone.0265219
Rodríguez-Hidalgo, A., Morales, J. I., Cebrià, A., Courtenay, L. A., Fernández-Marchena, J. L., García-Argudo, G., . . . Fullola, J.-M. (2019). The Châtelperronian Neanderthals of Cova Foradada (Calafell, Spain) used imperial eagle phalanges for symbolic purposes. Science Advances, 5(11), eaax1984. https://doi.org/10.1126/sciadv.aax1984
Rosas, A. (2001). Occurrence of Neanderthal features in mandibles from the Atapuerca-SH site. American Journal of Physical Anthropology, 114(1), 74-91. https://doi.org/10.1002/1096-8644(200101)114:1<74::AID-AJPA1007>3.0.CO;2-U
Rosas, A. (2010). Los neandertales. Catarata-CSIC.
Rosas, A. (2011). Neandertales. Desde Iberia hasta Siberia. In M. d. l. E. Humana (Ed.). Burgos: Junta de Castilla y León. Consejería de Cultura y Turismo.
Rosas, A., y Aguirre, E. (1999). Restos humanos Neandertales de la cueva de El Sidrón, Piloña, Asturas. Nota prelimiar. Estudios Geológicos, 55, 181-190. https://doi.org/10.3989/egeol.99553-4174
Rosas, A., Bastir, M., y García-Tabernero, A. (2022). Neanderthals: Anatomy, genes, and evolution. In F. Romagnoli, F. Rivals, y S. Benazzi (Eds.), Updating Neanderthals (pp. 71-87). Academic Press. https://doi.org/10.1016/B978-0-12-821428-2.00007-X
Rosas, A., Bastir, M., Martínez-Maza, C., Garcia-Tabernero, A., y Lalueza-Fox, C. (2006). Inquiries into Neanderthal craniofacial development and evolution: “accretion” versus “organismic” models. Springer. https://doi.org/10.1007/978-1-4020-5121-0_4
Rosas, A., Estalrrich, A., García-Tabernero, A., Huguet, R., Lalueza-Fox, C., Ríos, L., . . . de la Rasilla, M. (2015). Investigación paleoantropológica de los fósiles neandertales de El Sidrón (Asturias, España). Cuaternario y Geomorfología, 29 (3-4), 77-94. https://doi.org/10.17735/cyg.v29i3-4.40066
Slon, V., Mafessoni, F., Vernot, B., de Filippo, C., Grote, S., Viola, B., . . . Pääbo, S. (2018). The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature, 561(7721), 113-116. https://doi.org/10.1038/s41586-018-0455-x
Tattersall, I. (2011). Before the Neanderthals: Hominid Evolution in Middle Pleistocene Europe. In S. Condemi y G.-C. Weniger (Eds.), Continuity and Discontinuity in the Peopling of Europe: One Hundred Fifty Years of Neanderthal Study (pp. 47-53). Springer Netherlands. https://doi.org/10.1007/978-94-007-0492-3_4
Tattersall, I., y Schwartz, J. H. (1999). Hominids and hybrids: The place of Neanderthals in human evolution. Proceedings of the National Academy of Sciences, 96(13), 7117. https://doi.org/10.1073/pnas.96.13.7117
Vernot, B., Zavala, E. I., Gómez-Olivencia, A., Jacobs, Z., Slon, V., Mafessoni, F., . . . Meyer, M. (2021). Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments. Science, eabf1667. https://doi.org/10.1126/science.abf1667