Investigación de las zonas vulnerables a la erosión del suelo basada en un enfoque geoinformático agrupado: un estudio de caso de la cuenca del río Tyume, Cabo Oriental, Sudáfrica
DOI:
https://doi.org/10.17735/cyg.v38i3-4.101016Palabras clave:
Índices de paisaje, Erosión del suelo, Vulnerabilidad, Análisis morfométrico, SudáfricaResumen
El exhaustivo trabajo de campo, la especificidad medioambiental y la escasez de datos dificultan las evaluaciones detalladas de la erosión del suelo, la selección de modelos, el seguimiento ecológico y la priorización de la lucha contra la erosión del terreno. Para abordar este problema en un entorno topográficamente complejo, el presente estudio presenta una nueva selección de factores fisiográficos integrados geoespacialmente con los datos de uso / cobertura de la tierra y geología para priorizar las zonas vulnerables a la erosión del suelo dentro de una cuenca hidrográfica, aplicado a la cuenca del río Tyume, Sudáfrica como un estudio de caso. Se calculó un análisis morfométrico cuantitativo que incluía parámetros como la densidad de drenaje, el índice de humedad topográfica, el Índice de rugosidad del terreno, el indicador de la posición topográfica y la medida de rigidez del vector, utilizando un modelo de elevación digital basado en su inferencia de la respuesta morfogenética de la capa de agua a los factores antropogénicos y los procesos pluviométricos. Sobre la base del juicio de expertos para la clasificación temática y la ponderación, se generó el mapa de prioridad de la erosión del suelo a través de un análisis ponderado de la superposición de los parámetros morfométricos con la cobertura de las tierras de uso de la tierra y las capas de la litología superficial. El resultado mostró un mapa de la vulnerabilidad a la erosión del suelo a escala de cuenca, clasificado en zonas muy altas (40 km2), altas (135 km2), medianas (209 km2), bajas (186 km2) y no vulnerables (113 km2). Utilizando los análisis de imágenes de Google Earth a través del coeficiente de determinación (R2 = 0,563) y la curva de características operacionales del receptor (AUC = 0,899), la corroboración del modelo indicó que la evaluación de la vulnerabilidad a la erosión del suelo es fiable y altamente predictiva. El estudio identificó la explotación extensiva de animales y el sobrepastoreo de las colinas, particularmente en las zonas ribereñas, ya que las prácticas ambientales agravan la susceptibilidad del terreno de la cuenca a la erosión del suelo. La evaluación mostró que algunos de los parámetros morfométricos seleccionados podrían utilizarse para mejorar los modelos validados de erosión del suelo en las regiones montañosas. Debido a la alta precisión del enfoque empleado y las afecciones ambientales identificadas, el método puede adoptarse en entornos similares.
Citas
Aloui, S., Mazzoni, A., Elomri, A., Aouissi, J., Boufekane, A., Zghibi, A. (2023). A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. Journal of Environmental Management, 326, 116799. https://doi.org/10.1016/j.jenvman.2022.116799
Amatulli, G., McInerney, D., Sethi, T., Strobl, P., Domisch, S. (2020). Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Scientific Data, 7(1), 1-18. https://doi.org/10.1038/s41597-020-0479-6
Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R. (1998). Large area hydrologic modeling and assessment part I: model development 1. Journal of the American Water Resources Association, 34(1), 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
Arumugam, T., Kinattinkara, S., Velusamy, S., Shanmugamoorthy, M., Murugan, S. (2023). GIS based landslide susceptibility mapping and assessment using weighted overlay method in Wayanad: A part of Western Ghats, Kerala. Urban Climate, 49, 101508. https://doi.org/10.1016/j.uclim.2023.101508
Avand, M., Kuriqi, A., Khazaei, M., Ghorbanzadeh, O. (2022). DEM resolution effects on machine learning performance for flood probability mapping. Journal of Hydro-Environment Research, 40, 1-16. https://doi.org/10.1016/j.jher.2021.10.002
Basga, S.D., Temga, J.P., Tsozué, D., Gove, A., Sali, B., Nguetnkam, J.P. (2020). Erodibility of Vertisols in relation to agricultural practices along a toposequence in the Logone floodplain. Soil & environment, 39(1), 1-12. https://doi.org/10.25252/SE/2020/101855
Basson, G., Bosman, E., Vonkeman, J. (2022). Reservoir sedimentation mitigation measures to deal with a severe drought at Graaff-Reinet, South Africa. In E3S Web of Conferences (Vol. 346, p. 03012). EDP Sciences. https://doi.org/10.1051/e3sconf/202234603012
Bhatt, S., Ahmed, S.A. (2014). Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto Imnternational, 29(8), 878-894. https://doi.org/10.1080/10106049.2013.868042
Biswa, J., Giri, B. (2023). RUSLE and AHP based soil erosion risk mapping for Jalpaiguri district of West Bengal, India. Proceedings of the Indian National Science Academy, 89(4), 869-883. https://doi.org/10.1007/s43538-023-00197-3
Boardman, J., Foster, I.D., Rowntree, K.M., Favis-Mortlock, D.T., Mol, L., Suich, H., Gaynor, D. (2017). Long-term studies of land degradation in the Sneeuberg uplands, eastern Karoo, South Africa: a synthesis. Geomorphology, 285, 106-120. https://doi.org/10.1016/j.geomorph.2017.01.024
Busico, G., Grilli, E., Carvalho, S.C., Mastrocicco, M., Castaldi, S. (2023). Assessing Soil Erosion Susceptibility for Past and Future Scenarios in Semiarid Mediterranean Agroecosystems. Sustainability, 15(17), 12992. https://doi.org/10.3390/su151712992
Butler, K., 2013. Band combination for Landsat 8. Imagery & Remote sensing. https://www.esri.com/arcgis-blog/products/product/imagery/band-combinations-for-landsat-8/
Cassidy, R., Doody, D.G., Watson, C.J. (2017). Impact of legacy soil phosphorus on losses in drainage and overland flow from grazed grassland soils. Science of the Total Environment, 575, 474-484. https://doi.org/10.1016/j.scitotenv.2016.07.063
Chungag, A., van Tol, J.J., Magagula, B. (2017). Effect of unguided cattle husbandry on selected soil physical properties in common property regimes in Alice, Eastern Cape Province, South Africa. Range Management and Agroforestry, 38(2), 176-180.
Deribew, K.T., Arega, E., Moisa, M.B. (2024). Prediction of the topo-hydrologic effects of soil loss using morphometric analysis in the upper Bilate watershed. Bulletin of Engineering Geology and the Environment, 83(5), 162. https://doi.org/10.1007/s10064-024-03634-9
Dimple, Singh, P.K., Kothari, M., Yadav, K.K., Bhakar, S.R. (2023). Multi-criteria decision analysis for groundwater potential zones delineation using geospatial tools and Analytical Hierarchy Process (AHP) in Nand Samand Catchment, Rajasthan, India. Environment, Development and Sustainability, 1-35. https://doi.org/10.1007/s10668-023-03177-1
Dijkshoorn, J.A., van Engelen, V.W.P., Huting, J.R.M.l. (2008). Soil and landform properties for LADA partner countries (Argentina, China, Cuba, Senegal and The Gambia, South Africa, and Tunisia). ISRIC report 2008/06 and GLADA report 2008/03, ISRIC – World Soil Information and FAO, Wageningen (23).
Dutta, A., Ray, R., Banerjee, M. (2024). Multi-criteria-based decision making approach for soil erosion susceptibility modelling of Sali River Basin, Bankura, India. Environment, Development and Sustainability, 1-26. https://doi.org/10.1007/s10668-024-04736-w
Dwivedi, R.S. Ramana, K.V. (2003). The delineation of reclamative groups of ravines in the Indo-Gangetic alluvial plains using IRS-1D LISS-III data. International Journal of Remote Sensing, 24(22), 4347-4355. https://doi.org/10.1080/0143116031000116994
Department of Water and Sanitation (DWS) (2017). Hydrological services - surface water: Reservoir sites, https://www.dwa.gov.za/Hydrology/Verified/HyCatalogue.aspx.
Farhan, Y. Nawaiseh, S. (2015). Spatial assessment of soil erosion risk using RUSLE and GIS techniques. Environmental Earth Sciences, 74(6), 4649-4669. https://doi.org/10.1007/s12665-015-4430-7
Fatumo, D.E., Ngwenya, S., Shibeshi, Z., Aduradola, O.J., Azeez, A.N. (2021). Impact of Information and Communication Technology in Enhancing Food Security in a Rural Area: Alice Community as a Case Study. In 2021 IST-Africa Conference (IST-Africa) (pp. 1-8). IEEE.
Flanagan, D.C. Nearing, M.A. (1995). USDA-Water erosion prediction project: Hillslope profile and watershed model documentation. National Soil Erosion Research Laboratory, West Lafayette, Indiana, Report No. 10., 12.3 https://www.ars.usda.gov/ARSUserFiles/ (accessed 12 October 2020).
Ghosh, P., Lepcha, K. (2019). Weighted linear combination method versus grid based overlay operation method–A study for potential soil erosion susceptibility analysis of Malda district (West Bengal) in India. The Egyptian Journal of Remote Sensing and Space Science, 22(1), 95-115. https://doi.org/10.1016/j.ejrs.2018.07.002
Gwapedza, D., Nyamela, N., Hughes, D.A., Slaughter, A.R., Mantel, S.K., van der Waal, B. (2021). Prediction of sediment yield of the Inxu River catchment (South Africa) using the MUSLE. International Soil and Water Conservation Research, 9(1), 37-48. https://doi.org/10.1016/j.iswcr.2020.10.003
Halder, S., Roy, M.B., Roy, P.K. (2021). Modelling soil erosion risk of a tropical plateau basin to identify priority areas for conservation. Environmental Earth Sciences, 80(18), 646. https://doi.org/10.1007/s12665-021-09941-8
Haokip, P., Khan, M.A., Choudhari, P., Kulimushi, L.C., Qaraev, I. (2022). Identification of erosion-prone areas using morphometric parameters, land use land cover and multi-criteria decision-making method: geo-informatics approach. Environment, Development and Sustainability, 24(1), 527-557. https://doi.org/10.1007/s10668-021-01452-7
Hasanuzzaman, M., Mandal, M.H., Hasnine, M., Shit, P.K. (2022). Groundwater potential mapping using multi-criteria decision, bivariate statistic and machine learning algorithms: evidence from Chota Nagpur Plateau, India. Applied Water Science, 12(4), 58. https://doi.org/10.1007/s13201-022-01584-9
He, X., Miao, Z., Wang, Y., Yang, L., Zhang, Z. (2024). Response of soil erosion to climate change and vegetation restoration in the Ganjiang River Basin, China. Ecological Indicators, 158, 111429. https://doi.org/10.1016/j.ecolind.2023.111429
Hebinck, P., Mtati, N., Shackleton, C. (2018). More than just fields: Reframing deagrarianisation in landscapes and livelihoods. Journal of Rural Studies, 61, 323-334. https://doi.org/10.1016/j.jrurstud.2018.01.004
Helmi, A.M. (2023). Quantifying catchments sediment release in arid regions using GIS-based Universal soil loss equation (USLE). Ain Shams Engineering Journal, 14(8), 102038. https://doi.org/10.1016/j.asej.2022.102038
Hembram, T.K., Paul, G.C., Saha, S. (2019). Comparative analysis between morphometry and geo-environmental factor-based soil erosion risk assessment using the weight of evidence model: a study on Jainti River Basin, Eastern India. Environmental Processes, 6(4), 883-913. https://doi.org/10.1007/s40710-019-00388-5
Hladky, J., Kynický, J., Dvořáčková, H., Elbl, J., Brtnický, M. (2017). Effect of long-term erosion on humus content and quality on chernozem soils. International Multidisciplinary Scientific GeoConference: SGEM, 17, 179-184. https://doi.org/10.5593/sgem2017/32/S13.024
Hojati, M., Mokarram, M. (2016). Determination of a topographic wetness index using high resolution digital elevation models. European Journal of Geography, 7(4), 41-52.
Jadidoleslam, N., Mantilla, R., Krajewski, W.F., Goska, R. (2019). Investigating the role of antecedent SMAP satellite soil moisture, radar rainfall and MODIS vegetation on runoff production in an agricultural region. Journal of Hydrology, 579, 124-130. https://doi.org/10.1016/j.jhydrol.2019.124210
Jenness, J. (2006) Topographic Position Index: An Arc View 3.x tool for analyzing the shape of the landscape. http://www.jennessent.com/arcview/TPI_jen_poster.htm (Retrieved in 2021-08-26).
Kirkby, M.J. Statham, I. (1975). Surface stone movement and scree formation. The Journal of Geology, 83(3), 349-362. https://doi.org/10.1086/628097
Le Roux, J.J. (2012). Gully location mapping at a national scale for South Africa. South African Geographical Journal= Suid-Afrikaanse Geografiese Tydskrif, 94(2), 208-218. https://doi.org/10.1080/03736245.2012.742786
Libala, N., Palmer, C.G., Odume, O.N. (2020). Using a trait‐based approach for assessing the vulnerability and resilience of hillslope seep wetland vegetation cover to disturbances in the Tsitsa River catchment, Eastern Cape, South Africa. Ecology and Evolution, 10(1), 277-291. https://doi.org/10.1002/ece3.5893
Martínez-Murillo, J.F., López-Vicente, M., Poesen, J., Ruiz-Sinoga, J.D. (2011). Modelling the effects of land use changes on runoff and soil erosion in two Mediterranean catchments with active gullies (South of Spain). Landform Analysis, 17, 99-104.
Mhangara, P., Kakembo, V., Lim, K.J. (2012). Soil erosion risk assessment of the Keiskamma catchment, South Africa using GIS and remote sensing. Environmental Earth Sciences, 65(7), 2087-2102. https://doi.org/10.1007/s12665-011-1190-x
Morgan, R.P.C., Quinton, J.N., Smith, R.E., Govers, G., Poesen, J.W.A., Auerswald, K., Chisci, G., Torri, D., Styczen, M.E. (1998). The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23(6), 527-544. https://doi.org/10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5
Owolabi, S.T., Madi, K., Kalumba, A.M., Orimoloye, I.R. (2020). A groundwater potential zone mapping approach for semi-arid environments using remote sensing (RS), geographic information system (GIS), and analytical hierarchical process (AHP) techniques: a case study of Buffalo catchment, Eastern Cape, South Africa. Arabian Journal of Geosciences, 13, 1-17. https://doi.org/10.1007/s12517-020-06166-0
Owolabi, S.T., Madi, K., Kalumba, A.M. (2021a). Comparative evaluation of spatio-temporal attributes of precipitation and streamflow in Buffalo and Tyume Catchments, Eastern Cape, South Africa. Environment, Development and Sustainability, 23, 4236–4251. https://doi.org/10.1007/s10668-020-00769-z
Owolabi, S.T., Madi, K., Kalumba, A.M., Baiyegunhi, C. (2021b). A geomagnetic analysis for lineament detection and lithologic characterization impacting groundwater prospecting; a case study of Buffalo catchment, Eastern Cape, South Africa. Groundwater for Sustainable Development, 12, 100531. https://doi.org/10.1016/j.gsd.2020.100531
Owolabi, S.T., Belle, J.A., Mazinyo, S. (2022). Quantifying intra-catchment streamflow processes and response to climate change within a climatic transitional zone: a case study of Buffalo catchment, Eastern Cape, South Africa. Mathematics, 10(16), 3003. https://doi.org/10.3390/math10163003
Owolabi, S.T. Belle, J.A. (2023). Investigating extreme hydrological risk impact on water quality; evidence from Buffalo catchment headwater, Eastern Cape, South Africa. Environmental Science and Pollution Research, 1-26. https://doi.org/10.1007/s11356-023-27048-4
Pal, S. (2016). Identification of soil erosion vulnerable areas in Chandrabhaga river basin: a multi-criteria decision approach. Modelling Earth Systems and Environment, 2, 1-11. https://doi.org/10.1007/s40808-015-0052-z
Parwada, C., Van Tol, J. (2016). The nature of soil erosion and possible conservation strategies in Ntabelanga area, Eastern Cape Province. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 66(6), 544-552. https://doi.org/10.1080/09064710.2016.1188979
Phinzi, K. Ngetar, N.S. (2019). Land use/land cover dynamics and soil erosion in the Umzintlava catchment (T32E), Eastern Cape, South Africa. Philosophical Transactions of the Royal Society, 74(3), 223-237. https://doi.org/10.1080/0035919X.2019.1634652
Pimentel, D. (2010). Corn and cellulosic ethanol problems and soil erosion. Soil quality and biofuel production, In R Lal and B. A. Stewart (Eds). Soil quality and biofuel production, CRC Press, Boca Raton, 119–135.
Rahman, M.R., Shi, Z.H., Chongfa, C. (2009). Soil erosion hazard evaluation—an integrated use of remote sensing, GIS, and statistical approaches with biophysical parameters towards management strategies. Ecological Modelling, 220(13-14), 1724-1734. https://doi.org/10.1016/j.ecolmodel.2009.04.004
Renard, K.G., Foster, G.R., Weesies, G.A., Porter, J.P. (1991). RUSLE: Revised universal soil loss equation. Journal of Soils and Water Conservation, 46(1), 30-33.
Riley, S.J., DeGloria, S.D., Elliot, R. (1999). Index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5(1-4), 23-27.
Robb, L.J., Brandl, G., Anhaeusser, C.R., Poujol, M., Johnson, M.R., Thomas, R.J. (2006). Archaean granitoid intrusions. South African Journal of Geology, 57-94.
Różycka, M., Migoń, P., Michniewicz, A. (2017). Topographic wetness index and terrain ruggedness index in geomorphic characterization of landslide terrains, on examples from the Sudetes, SW Poland. Zeitschrift für geomorphologie, Supplementary Issue, 61(2), 61-80. https://doi.org/10.1127/zfg_suppl/2016/0328
Sappington, J.M., Longshore, K.M., Thompson, D.B. (2007). Quantifying landscape ruggedness for animal habitat analysis: a case study using bighorn sheep in the Mojave Desert. The Journal of Wildlife Management, 71(5), 1419-1426. https://doi.org/10.2193/2005-723
Sarkar, S., Kanungo, D.P. (2004). An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Engineering and Remote Sensing, 70(5), 617-625. https://doi.org/10.14358/PERS.70.5.617
Schillaci, C., Jones, A., Vieira, D., Munafò, M., Montanarella, L. (2023). Evaluation of the United Nations Sustainable Development Goal 15.3. 1 indicator of land degradation in the European Union. Land Degradation Development, 34(1), 250-268. https://doi.org/10.1002/ldr.4457
Sharma, A. (2010). Integrating terrain and vegetation indices for identifying potential soil erosion risk area. Geospatial Information Science, 13(3), pp.201-209. https://doi.org/10.1007/s11806-010-0342-6
Shen, H., Zhenga, F., Wen, L., Han, Y., Hu, W. (2016). Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil and Tillage Research, 155, 429-436. https://doi.org/10.1016/j.still.2015.09.011
Shtober-Zisu, N., Brook, A., Zissu, B. (2024). Soil denudation in the northwestern Negev (Israel) following the Late Byzantine–Early Islamic period. Geomorphology, 446, 108983. https://doi.org/10.1016/j.geomorph.2023.108983
Sibiya, S., Clifford-Holmes, J.K., Gambiza, J. (2023). Drivers of Degradation of Croplands and Abandoned Lands: A Case Study of Macubeni Communal Land in the Eastern Cape, South Africa. Land, 12(3), 606. https://doi.org/10.3390/land12030606
Smith, M.W. (2014). Roughness in the earth sciences. Earth-Science Reviews, 136, 202-225. https://doi.org/10.1016/j.earscirev.2014.05.016
Smith, P., Calvin, K., Nkem, J., Campbell, D., Cherubini, F., Grassi, G., Korotkov, V., Le Hoang, A., Lwasa, S., McElwee, P., Nkonya, E. (2020). Which practices co‐deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Global Change Biology, 26(3), 1532-1575. https://doi.org/10.1111/gcb.14878
Strahler, A.N. (1957). Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, 38(6), 913-920. https://doi.org/10.1029/TR038i006p00913
Streiner, D.L., Cairney, J. (2007). What's under the ROC? An introduction to receiver operating characteristics curves. Canadian Journal of Psychiatry, 52(2), 121-128. https://doi.org/10.1177/070674370705200210
Ugwu, I.E., Emmanuel, K., Vintus, O. (2024). Evaluating the Impacts of Soil Erosion on Selected Hillslopes in UNN Using WEPP Model. UNIZIK Journal of Engineering and Applied Sciences, 3(1), 567-572.
van Leeuwen, C.C., Cammeraat, E.L., de Vente, J., Boix-Fayos, C. (2019). The evolution of soil conservation policies targeting land abandonment and soil erosion in Spain: A review. Land Use Policy, 83, 174-186. https://doi.org/10.1016/j.landusepol.2019.01.018
Verbakel, J.Y., Steyerberg, E.W., Uno, H., De Cock, B., Wynants, L., Collins, G.S., Van Calster, B. (2020). ROC curves for clinical prediction models part 1. ROC plots showed no added value above the AUC when evaluating the performance of clinical prediction models. Journal of Clinical Epidemiology, 126, 207-216. https://doi.org/10.1016/j.jclinepi.2020.01.028
Vieira, A., Oyguc, R. (2024, eds.). Current Perspectives on Applied Geomorphology. BoD – Books on Demand, London, 112 p. https://doi.org/10.5772/intechopen.100708
Vrieling, A., Sterk, G., Vigiak, O. (2006). Spatial evaluation of soil erosion risk in the West Usambara Mountains, Tanzania. Land Degradation Development, 17(3), 301-319. https://doi.org/10.1002/ldr.711
Weiss, A. (2001). Topographic position and landforms analysis. In Poster presentation, ESRI user conference, San Diego, CA (Vol. 200).
Wilson, A., Flint, S., Payenberg, T., Tohver, E., Lanci, L. 2014. Architectural styles and sedimentology of the fluvial lower Beaufort Group, Karoo Basin, South Africa. The Journal of Sedimentary Research, 84(4), 326-348. https://doi.org/10.2110/jsr.2014.28
Wischmeier, W.H., Smith, D.D. 1978. Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science, and Education Administration.
Yue, L., Juying, J., Bingzhe, T., Binting, C., Hang, L. (2020). Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region, China. Journal of Hydrology, 584, 124694. https://doi.org/10.1016/j.jhydrol.2020.124694
Zengeni, R., Kakembo, V., Nkongolo, N. (2016). Historical rainfall variability in selected rainfall stations in Eastern Cape, South Africa. South African Geographical Journal= Suid-Afrikaanse Geografiese Tydskrif, 98(1), 118-137. https://doi.org/10.1080/03736245.2014.977811
Zhang, Y., Jiang, Y., Sun, X., Li, H., Yuan, C., Liu, H., Liu, J., Mello, C.R., Boyer, E.W., Guo, L. (2024). The hydrologic nature of swales uncovers remarkable influence of non-topographic factors on catchment-scale soil moisture variation. Journal of Hydrology, 635, 131196. https://doi.org/10.1016/j.jhydrol.2024.131196