Luminescence dating: optically stimulated (OSL) and thermoluminescence (TL)
DOI:
https://doi.org/10.17735/cyg.v36i3-4.96428Keywords:
optically stimulated luminescence; OSL; dating; geochronology; dose rate; quartzAbstract
Over the past years, luminescence dating has become one of the key methods to establish absolute chronologies for the Quaternary. It is applied on quartz and feldspar grains which are abundant in most sedimentary environments and are contained in pottery. This makes it one of the most versatile dating techniques for both, geology and archaeology. Optically Stimulated Luminescence (OSL) and related techniques as well as thermoluminescence (TL) date the last moment that those mineral grains were exposed to daylight or to high temperature, before being deposited and buried. The latest advances in the technique have made it possible to increase the precision, leading to the estimation of ages with an uncertainty below 10%, and offering an age range that covers from the present to several hundred thousands of years. The difficulties that this technique used to have, are, nowadays, additional information to the estimated ages. This article aims to provide enough information for the users of luminescence dating to make the most of its potential and to help them in the interpretation of their results.
Downloads
References
Adamiec, G. (2000). Variations in luminescence properties of single quartz grains and their consequences for equivalent dose estimation. Radiation Measurements, 32, 427-432. https://doi.org/10.1016/S1350-4487(00)00043-3
Adamiec, G., Duller, G.A.T., Roberts, H.M., Wintle, A.G. (2010). Improving the TT-OSL SAR protocol through source trap characterisation. Radiation Measurements 45, 768-777. https://doi.org/10.1016/j.radmeas.2010.03.009
Aitken, M.J. (1985). Thermoluminescence dating. Academic Press.
Aitken, M.J. (1998). An Introduction to Optical Dating. Oxford University Press, Oxford.
Ankjærgaard, C., Guralnik, B., Buylaert, J.-P., Reimann, T., Yi, S.W., Wallinga, J. (2016). Violet stimulated luminescence dating of quartz from Luochuan (Chinese loess plateau): agreement with independent chronology up to ~600 ka. Quaternary Geochronology, 34, 33–46. https://doi.org/10.1016/j.quageo.2016.03.001
Bartolomé, M., Sancho, C., Benito, G., Medialdea, A., Calle, M., Moreno, A., Leunda, M., Luetscher, M., Muñoz, A., Bastida, J., Cheng, H., Edwards, R. L. (2021). Effects of glaciation on karst hydrology and sedimentology during the Last Glacial Cycle: The case of Granito cave, Central Pyrenees (Spain). Catena 206, 105252. https://doi.org/10.1016/j.catena.2021.105252.
Bøtter-Jensen, L., McKeever, S.W.S., and Wintle, A.G. (2003). Optically stimulated luminescence dosimetry. Elsevier. https://doi.org/10.1016/B978-044450684-9/50091-X
Duller, G.A.T. (2003). Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161–165. https://doi.org/10.1016/S1350-4487(02)00170-1
Duller, G.A.T. (2008). Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas, 37: 589-612. https://doi.org/10.1111/j.1502-3885.2008.00051.x
Duller G.A.T. y Wintle, A.G. (2012). A review of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments. Quaternary Geochronology, 7, 6-20. https://doi.org/10.1016/j.quageo.2011.09.003
Durcan, J.A., King, G E., Duller, G.A.T. (2015). DRAC: Dose Rate and Age Calculator for trapped charge dating. Quat. Geochronology 28, 54–61. https://doi.org/10.1016/j.quageo.2015.03.012
Durcan, J.A. (2021). Luminescence Dating. En: Encyclopedia of Geology, 2nd Edition. https://doi.org/10.1016/B978-0-12-409548-9.12105-0
Faershtein, G., Guralnik, B., Lambert, R., Matmon, A., Porat, N. (2018). Investigating the thermal stability of TT-OSL main source trap. Radiation Measurements, 119, 102-111. https://doi.org/10.1016/j.radmeas.2018.09.010
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M. (1999). Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: part 1, experimental design and statistical models. Archaeometry 41, 339-364. https://doi.org/10.1111/j.1475-4754.1999.tb00987.x
Galbraith, R.F. y Roberts, R.G. (2012). Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology 11, 1-27. https://doi.org/10.1016/j.quageo.2012.04.020
Guérin, G., Mercier, N., Adamiec, G. (2011). Dose-rate conversion factors: update. Ancient TL 29, 5–8.
IAEA, International Atomic Energy Agency (2011). Analytical Methodology for the Determination of Radium Isotopes in Environmental Samples. IAEA Analytical Quality in Nuclear Applications Series, Issue 19, 2.
Li, S.H. (1994). Optical dating: Insufficient bleached sediments. Radiation Measurements 23, 563-567. https://doi.org/10.1016/1350-4487(94)90100-7
Li, B., Li, S.H. (2006). Studies of thermal stability of charges associated with thermal transfer of OSL from quartz. Journal of Physics D-Applied Physics 39, 2941-2949. https://doi.org/10.1088/0022-3727/39/14/011
Liritzis, I., Stamoulis, K., Papachristodoulou, C., Ioannides, K. (2013). A re-evaluation of radiation dose-rate conversion factors. Mediterranean Archaeology and Archaeometry 13, 1-15.
Machado, M.J., Medialdea, A., Calle, M., Rico, M.T., Sánchez-Moya, Y., Sopeña, A., Benito, G. (2017). Historical palaeohydrology and landscape resilience of a Mediterranean rambla (Castellón, NE Spain): Floods and people. Quaternary Science Reviews, 171, 182-198. https://doi.org/10.1016/j.quascirev.2017.07.014
Medialdea, A. (2013). Towards the reconstruction of flood histories: luminescence dating of palaeoflood deposits. Tesis Doctoral, Universidad Autónoma de Madrid, 194 pp.
Medialdea, A., Thomsen, K.J., Murray, A.S., Benito, G. (2014). Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quaternary Geochronology, 22, 11-24. doi.org/10.1016/j.quageo.2014.01.004
Medialdea, A., Insua-Arévalo, J.M., García-Mayordomo, J. (2021). Cronología extendida en depósitos aluviales mediante luminiscencia estimulada por luz violeta (VSL) en el SE de la Península Ibérica. Actas X Congreso Geológico de España, Vitoria (España).
Medialdea, A., Brill, D., King, G.E., Zander, A., Lopez-Ramirez, M.R., Bartz, M., Brückner, H. (2022). Violet stimulated luminescence as an alternative for dating complex colluvial sediments in the Atacama Desert. Quaternary Geochronology 71, 101337. doi.org/10.1016/j.quageo.2022.101337
Murray, A.S. y Wintle, A.G. (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 57–73. https://doi.org/10.1016/S1350-4487(99)00253-X
Porat, N., Amit, R., Zilberman, E., Enzel, Y. (1997). Luminescence dating of fault-related alluvial fan sediments in the southern Arava Valley, Israel. Quaternary Science Reviews, 16, 3-5, 397-402, https://doi.org/10.1016/S0277-3791(96)00101-1.
Prescott J. R. y Hutton J. T. (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long term time variations. Radiation Measurements 23, 497-500. https://doi.org/10.1016/1350-4487(94)90086-8
Silva, P.G., Roquero, E., Bardají, T., Medialdea, A. (2020). Fases Pleistocenas y Holocenas de sedimentación aluvial y formación de suelos en el SE semiárido de España (Cordilleras Béticas Orientales). Cuaternario y Geomorfología 34, 41-61. https://doi.org/10.17735/cyg.v34i1-2.78815.
Simon, J.L., Ezquerro, L., Arlegui, L.E., Liesa, C.L., Luzon, A., Medialdea, A., Garcia, A., Zarazaga, D. (2019). Role of transverse structures in paleoseismicity and drainage rearrangement in rift systems: the case of the Valdecebro fault zone (Teruel graben, eastern Spain). Journal of Earth Sciences 108, 5, 1429-1449. doi.org/10.1007/s00531-019-01707-9
Sohbati, R., Murray, A.S., Buylaert, J-P., Ortuño, M., Cunha, PP., Masana, E. (2012). Luminescence dating of Pleistocene alluvial sediments affected by the Alhama de Murcia fault (eastern Betics, Spain) – a comparison between OSL, IRSL and post-IR IRSL ages. Boreas, 41, 2, 250-262. https://doi.org/10.1111/j.1502-3885.2011.00230.x
Thomsen, K.J., Murray, A.S., Bøtter-Jensen, L. (2005). Sources of variability in OSL dose measurements using single grains of quartz. Radiation Measurements, 39, 1, 47-61, https://doi.org/10.1016/j.radmeas.2004.01.039.
Thomsen, K.J., Murray, A.S., Bøtter-Jensen, L. (2007). Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiation Measurements, 42, 370-379. https://doi.org/10.1016/j.radmeas.2007.01.041
Tukey, J.W. (1977). Exploratory Data Analysis. Addison Wesley, Reading, Mass.
UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation (2010). UNSCEAR 2008 Sources and Effects of Ionizing Radiation, Report to the General Assembly with Scientific, Vol. 1, 339. https://doi.org/10.18356/9b8f628f-en
del Val, Duval, M., Medialdea, A., Bateman, M.D., Moreno, D., Arriolabengoa, M., Aranburu, A., Iriarte, E. (2019). First chronostratigraphic framework of fluvial terrace systems in the eastern Cantabrian margin (Bay of Biscay, Spain). Quaternary Geochronology, 49, 108-114. https://doi.org/10.1016/j.quageo.2018.07.001
Wintle, A.G. (1973). Anomalous fading of thermoluminescence in mineral samples. Nature 245, 107–118. https://doi.org/10.1038/245143a0
Wintle, A.G. (1997). Luminescence dating: laboratory procedures and protocols. Radiation Measurements, 27, 769–817. https://doi.org/10.1016/S1350-4487(97)00220-5