Marine Isotope Stages: Oxygen Isotope Stratigraphy

Authors

  • Teresa Bardají Azcárate Universidad de Alcalá, Departamento de Geología, Geografía y Medio Ambiente
  • Javier Lario Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED)

DOI:

https://doi.org/10.17735/cyg.v36i3-4.94172

Keywords:

Glacial-interglacial stages; Pleistocene; chronology; paleoclimate

Abstract

Oxygen isotopic stratigraphy cannot be considered as a dating method by itself, requiring the comparison of our records with “global” isotopic sequences. The proportion of oxygen isotopes (O16, O18) in molecular compounds containing them (e.g. H2O, CaCO3) changes with temperature. The relation O18/O16 (δO18) can thus be used as a thermometer to infer past temperatures, and also to identify the changes in the ice-sheets configuration promoted by changes in orbital parameters (obliquity, precession, tilt). Alternation glacial to interglacial climates along the Quaternary is recorded in oceanic deep cores (CaCO3 from planktonic/benthonic organisms) allowing the definition of isotope stages by odd numbers (interglacials) and pair numbers (glacials). Isotopic scale acquires a chronostratigraphic value when age models are constructed based in isotopic dating (14C, U-series), paleomagnetism and mainly by astronomical tunning. The correlation between our records and these isotopic sequences allows to give them a chorological framework and interpreting the response in our latitude to global paleoclimatic variations.

References

Ahn, S., Khider, D., Lisiecki, L.E., Lawrence, C.E. (2017). A probabilistic Pliocene-Pleistocene stack of benthic δ18O using a profile hidden Markov model. Dynamics and Statistics of the Climate System 2(1), 1-16. https://doi.org/10.1093/climsys/dzx002

Arrhenius, G. (1952). Sediment Cores from East Pacific. Reports of the Swedish Deep-Sea Expedition (1947–1948) 5(1), 227pp.

Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y. (1994). The astronomical theory of climate and the Brunhes-Matuyama reversal. Earth and Planetary Science Letters 126, 91-108. https://doi.org/10.1016/0012-821X(94)90244-5

Bemis, B. E., Spero, H. J., Bijma, J., & Lea, D. W. (1998). Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations. Paleoceanography, 13, 150-160. https://doi.org/10.1029/98PA00070

Cabero, A. (2009). Registro costero de los cambios eustáticos y climáticos durante los interglaciares recientes cuaternarios: Sur y Sureste peninsular, islas Baleares, Canarias y Cabo Verde. Tesis Doctoral, Universidad de Salamanca.

Camuera, J., Jiménez-Moreno, G., Ramos-Román, M.J., García-Alix, A., Toney, J.L., Anderson, R.S., Jiménez-Espejo, F., Kaufman, D., Bright, J., Webster, C., Yanes, Y., Carrión, J.S., Ohkouchi, N., Suga, H., Yamame, M., Yokoyama, Y., Martínez-Ruiz, F., (2018). Orbital-scale environment and climatic changes recorded in a new ~ 200,000-year-long multiproxy sedimentary record from Padul, southern Iberian Peninsula. Quaternary Science Reviews 198, 91-114. https://doi.org/10.1016/j.quascirev.2018.08.014

Camuera, J., Jiménez-Moreno, G., Ramos-Román, M.J., García Alix, A., Toney, J.L., Scott Anderson, R., Jiménez-Espejo, F., Bright, J., Webster, C., Yanes, Y., Carrión, J.S. (2019). Vegetation and climate changes during the last two glacial-interglacial cycles in the western Mediterranean: A new long pollen record from Padul (southern Iberian Peninsula). Quaternary Science Reviews 205, 86-105. https://doi.org/10.1016/j.quascirev.2018.12.013

Camuera, J., Jiménez-Moreno, G., Ramos-Román, M.J., García-Alix, A., Jiménez-Espejo, F., Toney, J.L., Scott Anderson, R. (2021). Chronological control and centennial-scale climatic subdivisions of the Last Glacial Termination in the western Mediterranean region. Quaternary Science Reviews 255, 106814. https://doi.org/10.1016/j.quascirev.2021.106814

Emiliani, C. (1955). Pleistocene temperatures. Journal of Geology 63(6), 538-578. https://doi.org/10.1086/626295

Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C. (1951). Carbonate-water isotopic temperature scale. Geological Society of America Bulletin 62, 417-425. https://doi.org/10.1130/0016-7606(1951)62[417:CITS]2.0.CO;2

Epstein, S., Buchsbaum, R., Lowenstam, H.A., Urey, H.C. (1953). Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin 64, 1315-1325. https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO;2

Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.) (2012). The Geologic Time Scale, 2012. Elsevier, 1144pp.

Grossman, E.L. (2012). Oxygen Isotope Stratigraphy. En: Grandstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds). The Geologic Time Scale. Elsevier, cap. 10, 181-206. https://doi.org/10.1016/B978-0-444-59425-9.00010-X

Halverson, G.P. (2015). Marine Isotope Stratigraphy. En W.J. Rink & J.W. Thompson (Eds). Encyclopedia of Scientific Dating Methods Springer, Dordrecht, 517-528. https://doi.org/10.1007/978-94-007-6326-5_130-1

Hays, J.D., Imbrie, J., Shackleton, N.J. (1976). Variations in the Earth’s orbit: Pacemaker of the Ice Ages. Science 194, 1121-1132. https://doi.org/10.1126/science.194.4270.1121

Imbrie. J. e Imbrie, K.P. (1979). Ice Ages: solving the mystery. Harvard University Press. Enslow Publishers 224 pp. https://doi.org/10.1007/978-1-349-04699-7

Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., Shackleton, N.J. (1984). Th orbital theory of Pleistocene climate: support from a revised chronology of the marine δO18 record. En: Milankovitch and Climate (Berger et al., eds). D. Reidel Publishing Company. Part 1, 269-305.

Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Petersen, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., Toggweiler, J.R. (1992). On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography 7(6), 701-738. https://doi.org/10.1029/92PA02253

Laskar, J.; Fienga, A.; Gastineau, M.; Manche, H. (2011). La2010: a new orbital solution for the long-term motion of the Earth. Astronomy & Astrophysics, 532(), A89–. https://doi.org/10.1051/0004-6361/201116836

Lisiecki, L. y Raymo, M. (2005). A Pliocene – Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 17pp. https://doi.org/10.1029/2004PA001071

Martín-Chivelet, J. y Muñoz-García, M.B. (2015). Estratigrafía de isótopos de oxígeno y la reconstrucción de cambios climáticos del pasado. Enseñanza de las Ciencias de la Tierra 23(2), 160-170.

Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., Shackleton, N.J. (1987). Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300.000-year Chronostratigraphy. Quaternary Research 27, 1-29. https://doi.org/10.1016/0033-5894(87)90046-9

McCrea, J.M. (1950). On the isotope chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849-857. https://doi.org/10.1016/0033-5894(87)90046-9

Menéndez-Amor, J., Florschütz, F. (1962). Un aspect de la végétation en Espagne méridionale durant la dernière glaciation et L'Holocène. Geol. Mijnbouw 41, 131-134.

Menéndez-Amor, J., Florschütz, F. (1964). Results of the preliminary palynological investigation of samples from a 50 m boring in southern Spain. Bol. Real Sociedad Española Historia Natural 62, 251-255.

Milankovitch, M. (1920). Théorie Mathématique des Phénomènes Thermiques Produits par la Radiation Solaire. Académie Yougoslave des Sciences et des Arts de Zagreb, Gauthier Villars, Paris, France.

Pisias, N.G., Martinson, D.G., Moore, T.C., Shackleton, N.J., Prell, W., Hays, J., Boden, G. (1984). High resolution stratigraphic correlation of benthic oxygen isotopic records spanning the last 300,000 years. Marine Geology 56, 119-136. https://doi.org/10.1016/0025-3227(84)90009-4

Prell, W.L., Imbrie, J., Martinson, D.G., Morley, J.J., Pisias, N.G., Shackleton, N.J., Streeter, H.F. (1986). Graphic Correlation of oxygen isotope stratigraphy. Application to the Late Quaternary. Paleoceanography 1(2), 137-162. https://doi.org/10.1029/PA001i002p00137

Railsback, L.B., Gibbard, P.L., Head, M.J., Voarintsoa, N.R.G., Toucanne, S. (2015). An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quaternary Science Reviews 111, 94-106. https://doi.org/10.1016/j.quascirev.2015.01.012

Raymo, M. E., Ruddiman, W. F., Shackleton N. J., Oppo D. W. (1990). Evolution of Atlantic- Pacific δ13C gradients over the last 2.5 m.y. Earth and Planetary Science Letters 97, 353 – 368. https://doi.org/10.1016/0012-821X(90)90051-X

Ruddiman, W.F. (2014). Earth’s Climate: Past and Future.W.H. Freeman and Co., New York (3ª Edición), 445pp.

Shackleton, N.J. (1967). Oxygen Isotope Analyses and Pleistocene Temperatures Re-assessed. Nature 215, 15-17. https://doi.org/10.1038/215015a0

Shackleton, N.J. (1974). Attainment of isotopic equilibrium between ocean water and the benthonic foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Colloques Internationaux du C.N.R.S. 219, 203-209.

Shackleton, N.J. (1969). The Last Interglacial in the marine and terrestrial records. Proceedings of the Royal Society, London B. 174, 135-154. https://doi.org/10.1098/rspb.1969.0085

Shackleton, N.J. (1995). New data on the evolution of Pliocene Climatic Variability. En: Paleoclimate and Evolution, with emphasis on Human Origins (E.S. Vrba, G.H. Denton, T.C. Partridge & Ll. H. Burckle, eds). Yale University Press, cap. 17, 242-248.

Shackleton, N.J. y Opdyke, N.D. (1973). Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 and 106 year scale. Quaternary Research 3, 39-55. https://doi.org/10.1016/0033-5894(73)90052-5

Shackleton, N.J., Berger, A., Peltier, W.R. (1990). An alternative astronomical calibration of the Lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edimburg: Earth Sciences 81, 251-261. https://doi.org/10.1017/S0263593300020782

Shackleton, N.J., Hall, M.A., Pate, D. (1995). Pliocene stable isotope stratigraphy of Site 846. En: Pisias, Mayer, Janecek, Palmer-Julson, vam Adel (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results, vol. 138, cap. 15, 337-355. https://doi.org/10.2973/odp.proc.sr.138.117.1995

Shackleton, N.J. y Hall, M.A. (1989). Stable isotope history of the Pliocene at ODP Site 677. En: Becker, Sakai et al. (Eds.). Proceedings of the Ocean Drilling Program, Scientific Results, vol. 111, cap. 25, 295-316. https://doi.org/10.2973/odp.proc.sr.111.150.1989

Urey, H.C., Lowenstam, H.A., Epstein, S., McKinney, C.R. (1951). Measurements of Paleotemperatures of the Upper Cretaceous of England, Denmark, and the Southeastern United States. Bulletin of the Geological Society of America 62, 399-416. https://doi.org/10.1130/0016-7606(1951)62[399:MOPATO]2.0.CO;2

Williams, D.F., Thunell, R.C., Tappa, E., Rio, D., Raffi, J. (1988). Chronology of the pleistocene oxygen isotope record: 0–1.88 m.y. B.P. Palaeogeography, Palaeoclimatology, Palaeoecology 64 (3-4) 221-240. https://doi.org/10.1016/0031-0182(88)90008-9

Published

2022-12-15