The potential of Ojo de Valjunquera cave (NE of Iberia) sediments for paleoflood reconstructions
DOI:
https://doi.org/10.17735/cyg.v35i3-4.89413Keywords:
paleoflood; stalagmites; Iberian Range; Moncayo; cave sedimentsAbstract
Speleothems and detrital deposits in caves are excellent archives of cave flood events but are still poorly exploited. In this study we evaluate, the potential of the Ojo de Valjunquera (Zaragoza, NE Spain) for the study of past floods based on geomorphological, topographical, hydrological, and chronological data. The cave comprises two subhorizontal levels. The lower level consists of a main horizontal conduit including six siphons. This level is connected to the upper one by shafts and ramps. That situation, together with the constrictions of the gallery in the lower level, favours the water rise during rainfall events. The upper level is characterized by a larger presence of speleothems and detrital sequences compared to the lower level. Current observations indicate that water can rise by ~9 m in some cave sectors during rainfall episodes >60 mm, although the hydraulic head rise is not homogeneous along the cave, depending on the section's morphology. The stalagmites and detrital sequences hosted in the upper gallery most likely contain evidence of extreme events of rainfall. However, geomorphological and sedimentological evidences also suggest that the cave outlet could have been blocked in the past by sediments, favouring the water rise to high places usually not affected by regular floods. The detrital sequences located in lower positions with respect to the cave entrance show a higher proportion of sandy sediments than those located in the higher sectors related to the water energy during the flood. Stalagmites show clean carbonate alternating with well-defined detrital layers. These detrital layers vary in thickness: the thinner ones are related to small floods, whereas the thicker ones are connected to large floods. Two important historical floods (1709 and 1755 CE) occurred in the area that coincide with distinct detrital layers recorded in the stalagmites. All these observations suggest that Ojo de Valjunquera cave contains an important paleoflood archive based on speleothems and detrital deposits during the Holocene.
References
Aranbarri, J., Bartolomé, M., Alcolea, M., Sancho, C., Celant, A., González-Sampériz, P., Arenas, C., Magri, D., Rodríguez-Lázaro, J. (2016). Palaeobotanical insights from Early-Mid Holocene fluvial tufas in the Moncayo Natural Park (Iberian Range, NE Spain): Regional correlations and biogeographic implications. Review of Palaeobotany and Palynology, 234, 31–43. https://doi.org/10.1016/j.revpalbo.2016.08.006
Arnaud, F. (2005). Discriminating bio-induced and detrital sedimentary processes from particle size distribution of carbonates and non-carbonates in hard water lake sediments. Journal of Paleolimnology, 34 (4), 519–526. https://doi.org/10.1007/s10933-005-6787-1
Bättig, G., Wildberger, A. (2007). Ein Vergleich des Hölloch-Hochwassers vom August 2005 mit seinen Vorgängern. Stalactite, 57 (1), 26–34.
Benito, G., Thorndycraft, V.R., Rico, M., Sánchez-Moya, Y., Sopeña, A. (2008). Palaeoflood and floodplain records from Spain: Evidence for long-term climate variability and environmental changes. Geomorphology, 101 (1-2), 68–77. https://doi.org/10.1016/j.geomorph.2008.05.020
Benito, G., Macklin, M.G., Panin, A., Rossato, S., Fontana, A., Jones, A.F., Machado, M.J., Matlakhova, E., Mozzi, P., Zielhofer, C. (2015). Recurring flood distribution patterns related to short-term Holocene climatic variability. Scientific Reports, 5, 16398. https://doi.org/10.1038/srep16398
Blöschl, G., Kiss, A., Viglione, A., Barriendos, M., Böhm, O., Brázdil, R., Coeur, D., Demarée, G., Llasat, M.C., Macdonald, N., Retsö, D., Roald, L., Schmocker-Fackel, P., Amorim, I., Bělínová, M., Benito, G., Bertolin, C., Camuffo, D., Cornel, D., Doktor, R., Elleder, L., Enzi, S., Garcia, J.C., Glaser, R., Hall, J., Haslinger, K., Hofstätter, M., Komma, J., Limanówka, D., Lun, D., Panin, A., Parajka, J., Petrić, H., Rodrigo, F.S., Rohr, C., Schönbein, J., Schulte, L., Silva, L.P., Toonen, W.H.J., Valent, P., Waser, J., Wetter, O. (2020). Current European flood-rich period exceptional compared with past 500 years. Nature, 583, 560–566. https://doi.org/10.1038/s41586-020-2478-3
Bosch, R.F., White, W.B. (2004). Lithofacies And Transport Of Clastic Sediments In Karstic Aquifers. In: Sasowsky, I.D., Mylroie, J. (Eds.), Studies of Cave Sediments: Physical and Chemical Records of Paleoclimate. Springer Netherlands, Dordrecht, 1–22. https://doi.org/10.1007/978-1-4020-5766-3_1
CHEBRO (2006). INFORME PIEZÓMETRO DE AMBEL 3 “VALJUNQUERA”: 09.602.019. Proyecto de Construcción de Sondeos e Instalación de la Red Oficial de Control de Aguas Subterráneas de la Cuenca del Ebro 2a fase. 40 pp.
Cheng, H., Lawrence Edwards, R., Shen, C.-C., Polyak, V.J., Asmerom, Y., Woodhead, J., Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Calvin Alexander, E. (2013). Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371–372, 82–91. https://doi.org/10.1016/j.epsl.2013.04.006
Corella, J.P., Benito, G., Rodriguez-Lloveras, X., Brauer, A., Valero-Garcés, B.L. (2014). Annually-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula. Quaternary Science Reviews, 93, 77–90. https://doi.org/10.1016/j.quascirev.2014.03.020
Corella, J.P., Valero-Garcés, B.L., Vicente- Serrano, S.M., Brauer, A., Benito, G. (2016). Three millennia of heavy rainfalls in Western Mediterranean: frequency, seasonality and atmospheric drivers. Scientific Reports, 6, 38206 https://doi.org/10.1038/srep38206
Cuadrat, J.M., Saz Sánchez, M.A., Vicente Serrano, S.M. (2008). Atlas climático de Aragón. Departamento de Medio Ambiente. Gobierno de Aragón, 291 p.
Denniston, R.F., Luetscher, M. (2017). Speleothems as high-resolution paleoflood archives. Quaternary Science Reviews, 170, 1–13. https://doi.org/10.1016/j.quascirev.2017.05.006
Denniston, R.F., Villarini, G., Gonzales, A.N., Polyak, V.J., Ummenhofer, C.C., Lachniet, M.S., Wanamaker, A.D., Humphreys, W.F., Woods, D., Cugley, J. (2015). Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia. PNAS Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4576–4581. https://doi.org/10.1073/pnas.1422270112
Diario de Navarra (2009) 14 de octubre de 1709, La noche de la ruina. Diario de Navarra. https://www.diariodenavarra.es/20091014/tudela/14-octubre-1709-noche-ruina.html [Consulted on April 28th2021].
Gázquez, F., Calaforra, J.M., Forti, P., Stoll, H., Ghaleb, B., Delgado-Huertas, A. (2014). Paleoflood events recorded by speleothems in caves. Earth Surface Processes and Landforms 39, 1345–1353. https://doi.org/10.1002/esp.3543
Gisbert, M., Pastor, M. (2006). Cuevas y simas de la provincia de Zaragoza. Centro de Espeleología de Aragón, 480 p.p
González-Lemos, S., Jiménez-Sánchez, M., Stoll, H.M. (2015a). Sediment transport during recent cave flooding events and characterization of speleothem archives of past flooding. Geomorphology, 228, 87–100. https://doi.org/10.1016/j.geomorph.2014.08.029
González-Lemos, S., Müller, W., Pisonero, J., Cheng, H., Edwards, R.L., Stoll, H.M. (2015b). Holocene flood frequency reconstruction from speleothems in northern Spain. Quaternary Science Reviews, 127, 129–140. https://doi.org/10.1016/j.quascirev.2015.06.002
Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., Essling, A.M. (1971). Precision Measurement of Half-Lives and Specific Activities of U235 and U238. Physical review C, 4 (5), 1889–1906. https://doi.org/10.1103/PhysRevC.4.1889
Longares, L.A. (2004). El paisaje vegetal en el sector aragonés del Moncayo. In: Peña, J.L., Longares, L.A., Sánchez, M. (Eds.) Geografía Física de Aragón. Aspectos generales y temáticos. Universidad de Zaragoza e Institución Fernando el Católico, pp0. 187-197 [WWW Document].
McManus, J. (1988). Grain size determination and interpretation. In: Tucker, M.E. (Ed.), Techniques in Sedimentology. Blackwell, Oxford, 63–85.
San Román, J., Sánchez, J., Martínez, F.J. (1989). El drenaje subterráneo del macizo del Moncayo: aspectos hidrológicos e hidroquímicos. Tvriaso, IX, 203-224.
Sancho, C., Arenas, C., Vázquez-Urbez, M., Pardo, G., Lozano, M.V., Peña-Monné, J.L., Hellstrom, J., Ortiz, J.E., Osácar, M.C., Auqué, L., Torres, T. (2015). Climatic implications of the Quaternary fluvial tufa record in the NE Iberian Peninsula over the last 500 ka. Quaternary Research, 84, 398–414. https://doi.org/10.1016/j.yqres.2015.08.003
Thorndycraft, V.R., Benito, G. (2006). The Holocene fluvial chronology of Spain: evidence from a newly compiled radiocarbon database. Quaternary Science Reviews, 25, 223–234. https://doi.org/10.1016/j.quascirev.2005.07.003
van Gundy, J.J., White, W.B. (2009). Sediment flushing in Mystic Cave, West Virginia, USA, in response to the 1985 Potomac Valley flood. International Journal of Speleology, 38, 103–109. https://doi.org/10.5038/1827-806X.38.2.2
Wilhelm, B., Cánovas, J.A.B., Macdonald, N., Toonen, W.H.J., Baker, V., Barriendos, M., Benito, G., Brauer, A., Corella, J.P., Denniston, R., Glaser, R., Ionita, M., Kahle, M., Liu, T., Luetscher, M., Macklin, M., Mudelsee, M., Munoz, S., Schulte, L., George, S.S., Stoffel, M., Wetter, O. (2019). Interpreting historical, botanical, and geological evidence to aid preparations for future floods. WIREs Water, 6, e1318. https://doi.org/10.1002/wat2.1318